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An improved « expansion in thed-dimensionalsd.2d stochastic theory of turbulence is constructed at
two-loop order, which incorporates the effect of pole singularities atd→2 in coefficients of the« expansion of
universal quantities. For a proper account of the effect of these singularities, two different approaches to the
renormalization of the powerlike correlation function of the random force are analyzed near two dimensions.
By direct calculation, it is shown that the approach based on the mere renormalization of the nonlocal corre-
lation function leads to contradictions at two-loop order. On the other hand, a two-loop calculation in the
renormalization scheme with the addition to the force correlation function of a local term to be renormalized
instead of the nonlocal one yields consistent results in accordance with the ultravioletsUVd renormalization
theory. The latter renormalization prescription is used for the two-loop renormalization-group analysis
amended with partial resummation of the pole singularities near two dimensions, leading to a significant
improvement of the agreement with experimental results for the Kolmogorov constant.
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I. INTRODUCTION

The renormalization-groupsRGd method in the theory of
turbulence allows us to calculate various physical
quantities—critical exponents and universal amplitude
ratios—in the form of an expansion in a small parameter«.
The real value of this parameter is not small, however, there-
fore justified doubts arise as to whether this method is of any
use for acceptable numerical estimates of the quantities stud-
ied. Until recently, practical calculations were carried out
only in the simplestsone-loopd approximation and therefore
it was not possible to assess how the next-to-leading terms of
the expansion actually compare with the leading order at the
real value of the parameter«=2. In Refs.f1,2g, this problem
was analyzed in the example of calculation of the skewness
factor and the Kolmogorov constant in the inertial range. The
calculation showed that the relative part of the two-loop.
correction is indeed large, of the order of 100% in the real
space dimensiond=3. This contribution, however, rapidly
decreases with the growth ofd: already ford=5 it yields
only 30% and in the limitd→` it decreases to 10%. On the
contrary, when the space dimension decreases fromd=3 to
d=2, a drastic growth of the correction term is observed.

Analysis of the dependence of the coefficients of the«
expansion on the space dimension has revealed that this
property is connected with the divergence of some graphs in
the limit d→2, and the singularities ind−2;2D accumulate
with the order of the perturbation expansion. Contributions
of these graphs turned out to give rise to the large value of
the correction term also atd=3. Thus, satisfactory quantita-
tive results may be expected only after summing, at least
approximately, the contributions of the most singular graphs
at all orders of the« expansion. Such a summation has been
carried out in Ref.f3g with the use of an additional renor-
malization and double expansion in« and D and with the
result of a significant relative reduction of the correction

term and improvement of the agreement with experiment.
The calculation in Ref.f3g has been carried out in the two-
loop approximation for both the usual« expansion and the
double s« ,Dd expansion. These expansions were used as
complementary to each other to arrive at the final result—an
approach distinguishing Ref.f3g from Refs.f4,5g, in which
the one-loop calculation in thes« ,Dd expansion was carried
out.

In Ref. f4g, where the idea of the double expansion and
subsequent extrapolation of the results from the starting
point d=2,«=0 to the physical pointd=3,«=2 was first
applied to the stochastic Navier-Stokes problem, as well as
later in Ref.f5g, this expansion was used as an alternative to
the usual« expansion atd.2. The reason for the attention
paid to this approach was that in this scheme—in contrast to
the usual way of renormalization in the model withd.2,
where only one quantity, the coefficient of viscosity, is
renormalized—another quantity, the random force, must be
renormalized as well. Therefore, it was definitely of interest
to find out the consequences of this new physical factor. The
results of Refs.f4,5g in this respect, however, are drastically
different due to different approaches to the renormalization
of the random force.

Renormalization of the random force was introduced in
stochastic hydrodynamics already in Ref.f6g, devoted to an
analysis of the kinetics of near-equilibrium hydrodynamic
fluctuations, but there it was of the usual multiplicative char-
acter. In Ref.f4g, an analogous renormalization was applied
to the stochastic theory of turbulence with an unexpected
result: violation of the Kolmogorov hypothesis of the inde-
pendence of correlation functions of viscosity in the inertial
range was predicted. In Ref.f5g, the renormalization scheme
used in Ref.f4g was criticized and a more complex scheme
put forward with results corroborating the Kolmogorov hy-
pothesis. Thus, the problem of the correct choice of the
renormalization scheme turned out to be crucial in the use of
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the double expansion. In the body of the present paper, a
detailed analysis of this issue shall be given, while here we
limit ourselves to a brief commentary.

Although renormalization of a model is usually carried
out in perturbation theory order by order, it is always implied
that certain relations hold to all orders. Violation of such
relations in an incorrect renormalization appears in different
ways in different renormalization schemes, but it is always a
sign of inherent inconsistency of the scheme rendering it
useless for applications. One of the main conditions of con-
sistency of UV renormalization is that counterterms used to
remove the divergences are local in space and time: they
have to be polynomials in fields and their derivatives, or—in
the Fourier representation—polynomials in frequencies and
wave vectors. As was pointed out in Ref.f5g, it was just this
condition that was violated in Ref.f4g when a multiplicative
renormalization of the random force was carried out, in anal-
ogy with Ref.f6g. The point is that in Ref.f6g the correlation
function of the random force was proportional to an integer
power of k2 sk2 in model A andk0 in model Bd so that the
renormalization corresponding to stretching of it was tanta-
mount to introduction of local counterterms. In Ref.f4g, on
the contrary, this correlation function is proportional to a
noninteger power ofk2 and it is thus nonlocal, which renders
multiplicative renormalization inconsistent. The solution of
the problem put forward in Ref.f5g is, in fact, nonmultipli-
cative renormalization of the random force: the introduction
of the counterterms necessary to remove divergences does
not correspond to stretching of the original nonlocal correla-
tion function of the random force but to adding a local term
to it.

In the one-loop approximation, to which the authors of
Refs.f4,5g restricted themselves, it is possible to remove the
divergences of the graphs both in the nonlocal renormaliza-
tion scheme of Ref.f4g and in the local scheme of Ref.f5g,
so that at this level both approaches seem equally acceptable.
The two-loop calculation carried out in the present paper
yields a direct confirmation that only the local scheme of
Ref. f5g is consistent—in accord with the general statements
of the renormalization theory. In the present paper, we pay
considerable attention to this issue, because the nonlocal
scheme has been repeatedly applied in fairly recent literature
f7,8g. A technical account of the method, which allowed us to
obtain the two-loop results announced inf3g, is given here as
well.

This paper is organized as follows. In Sec. II, we recall
basic features of thesfield-theoreticd renormalization proce-
dure and the subsequent asymptotic analysis in the two-loop
approximation well above the problematic two dimensions.
Section III is devoted to a detailed argument showing why
the multiplicative nonlocal renormalization fails at the two-
loop order of the double expansion. In Sec. IV, the consis-
tency of the local two-charge renormalization scheme is
demonstrated by the results of the two-loop calculation in
space dimensionsdø2 in which the technically simplest
combined scheme of analytic and dimensional renormaliza-
tion is unconditionally valid. Renormalization-group equa-
tions are set up in Sec. V with the subsequent two-loop so-
lution for asymptotic analysis in the inertial range. Details of
the method of calculation of universal quantities in the im-

proved« expansion are exposed in Sec. VI. Section VII con-
tains discussion of the results and concluding remarks. Ap-
pendix A contains an overview of the two-loop RG analysis
in a scheme in which renormalization is fixed—instead of
extracting only UV-divergent contributions from perturbation
expansion—by normalization conditions imposed on correla-
tion and response functions. Finally, the fairly technical issue
of the possibility of analytic continuation of the results ob-
tained fordø2 to space dimensions above 2 is discussed in
Appendix B.

II. RENORMALIZATION OF THE MODEL IN A FIXED
SPACE DIMENSION d.2

The statistical model of the developed homogeneous iso-
tropic turbulence of incompressible fluid is based on the sto-
chastic Navier-Stokes equation

¹twi = n0]
2wi − ]iP + f i, ¹t ; ]t + sw ] d. s1d

Here,wist ,xd is the divergenceless velocity field,Pst ,xd and
f ist ,xd are the pressure and the transverse random force per
unit mass, respectively, andn0 is the kinematic viscosity. For
the random forcef, a Gaussian distribution is assumed with
zero mean and the correlation function

kf ist,xdf jst8,x8dl ; Dijst,x;t8,x8d

=
dst − t8d
s2pdd E dk Pijskddfskdexpfiksx − x8dg,

s2d

wherePijskd=di j −kikj /k
2 is the transverse projection opera-

tor andd is the dimension of the coordinate space. For the
function dfskd, the following powerlike form is adopted in
the RG approach:

dfskd = D0k
4−d−2«. s3d

The quantity«.0 in Eq. s3d plays the role of a formal ex-
pansion parameter. The value corresponding to the physical
model is«=2, because for«→2, D0,s2−«d, we arrive at
dfskd,dskd, which corresponds to energy injection by infi-
nitely large eddies.

The stochastic problems1d and s2d is equivalent to a
quantum-field-theoretic model with a doubled set of trans-
verse vector fieldsF;hw ,w8j and the actionf9,10g

SsFd = w8Dw8/2 + w8f− ]tw + n0]
2w − sw ] dwg, s4d

whereD is the correlation function of the random forces2d,
and the necessary integrals overst ,xd and sums over vector
indices are implied. Actions4d gives rise to the standard
diagrammatic technique with the bare propagators whose
st ,kd representation is of the form

kwstdw8st8dl0 = ust − t8dexpf− n0k
2st − t8dg,

kw8w8l0 = 0, s5d
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kwwl0 =
dfskd
2n0k

2 expf− n0k
2ut − t8ug,

where the common factorPijskd has been omitted for sim-
plicity. The interaction in Eq.s4d brings about the three-point
vertex −w8sw] dw=wi8Vijsw jws/2 with the vertex factorVijs

= iskjdis+ksdi jd, wherek is the wave vector of the fieldw8.
The expansion parameter of the perturbation theory is the
coupling constantg0;D0/n0

3.
Model s4d is logarithmicsi.e., the coupling constantg0 is

dimensionlessd at «=0. In the analytic renormalization
scheme adopted here, the UV divergences have the form of
the poles in« in the correlation functions of the fieldF
;hw ,w8j. Dimensional analysisspower countingd shows that
for d.2, superficial UV divergences can be present only in
the one-particle-irreducibles1PId functionsGw8w and Gw8ww.
These divergences may be removed by counterterms of the
form

w8]2w, w8]tw, w8sw ] dw s6d

in the action. Due to symmetry reasons, however, in model
s4d only one counterterm of all allowed by the dimensional
analysis is actually generated. First, the spatial derivative
acting on the fieldw in the interaction term of actions4d can
be transferred to the fieldw8 with the use of integration by
parts. This means that the counterterms to the 1PI functions
must contain at least one spatial derivative, so that the struc-
turew8]tw cannot possibly appear. Second, from the Galilean
symmetry of actions4d it follows that the last two structures
of Eq. s6d can be brought about as counterterms only in the
invariant combinationw8¹tw with the Lagrangian derivative
¹t=]t+sw] d from Eq. s1d. This excludes also the structure
w8sw] dw. Thus, in the generic case we are left with a single
counterterm of the formw8]2w. In the special cased=2,
however, a new UV divergence appears in the 1PI function
Gw8w8.

Consider the renormalization of models4d in the two-loop
approximation ind.2. In this case, the only counterterm
required is w8]2w, which is generated by multiplicative
renormalization of the viscosity in the corresponding term of
action s4d. We shall use the scheme of minimal subtractions
sMSd in which the renormalization constants are determined
by the relations

n0 = nZn, D0 = g0n0
3 = gm2«n3,

g0 = gm2«Zg, Zg = Zn
−3. s7d

Here,m is the scale-setting parametersthe reference massd in
the MS scheme,n is the renormalized viscosity, andg is the
dimensionless renormalized charge. The only independent
renormalization constant in Eq.s7d is that of the viscosityZn.
The amplitude of the correlation function of the random
force D0 is not renormalized, because no counterterm of the
form w8w8 in action s4d is necessary. This leads to the rela-
tion between the renormalization constants of the charge and
viscosity indicated in Eq.s7d.

In the MS scheme, the renormalization constants are con-
structed as Laurent series in« of the form ”1+onù1an«−n”.
In particular,

Zn = 1 +u
a11

«
+ u2Sa22

«2 +
a21

«
D + ¯ = 1 + o

n=1

`

uno
k=1

n

ank«
−k,

s8d

where

u ;
gS̄d

32
, S̄d ;

Sd

s2pdd, Sd ;
2pd/2

Gsd/2d
, s9d

and the coefficientsank depend only ond. Here Sd is the
surface area of the unit sphere ind-dimensional space andG
is Euler’s Gamma function.

We shall determine the constantZn from the requirement
that the 1PI correlation functionGw8w at zero frequencysv
=0d is UV-finite, i.e., finite at«→0 when expressed as a
function of the renormalized variablesn andg determined by
relations s7d. With respect to vector indices, the function
Gw8w is proportional to the transverse projectorPijspd, where
p is the external wave vector. In the following, we shall deal
with the scalar coefficient of this projector obtained by the
contraction of the indicesi and j and division by TrP=d
−1. In terms of the bare parametersn0 and D0=g0n0

3, this
scalar coefficient atv=0 assumes the form −n0p

2+sum of
contributions of then-loop graphs, each of which containsn
pieces ofkwwl0 lines s5d and, correspondingly, the factorD0

n.
Thus, in view of dimensional arguments,

uTr Gw8wuv=0

d − 1
= n0p

2F− 1 + o
n=1

` S D0S̄d

32n0
3p2«Dn

gw8w
snd G s10d

with dimensionless coefficientsg
w8w

snd which only depend ond

and «. The factors 32 andS̄d in Eq. s10d have been intro-
duced for convenience. To obtain the renormalized function
Gw8w, the parametersD0 and n0 in Eq. s10d have to be ex-
pressed in terms ofn , g, andm according to definitionss7d,
which leaves the coefficientsg

w8w

snd intact. It is convenient to
divide the result bynp2 to arrive at the dimensionless quan-
tity

uTr Gw8wuv=0

np2sd − 1d
= − Zn + us2«gw8w

s1d Zn
−2 + sus2«d2gw8w

s2d Zn
−5 + ¯

s11d

with u from Eq. s9d ands;m /p.
The renormalization constantZn is determined from the

condition of cancellation of the poles in« in relations11d. In
the coefficientg

w8w

s1d , there is a simple pole,1/«, whereas

g
w8w

s2d contains poles,1/« and,1/«2, etc. For the two-loop
calculation ofZn, the following contributions are needed:

gw8w
s1d =

A

«
+ B + ¯ , s12d
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gw8w
s2d =

C

«2 +
D

«
+ ¯ , s13d

where the ellipsis stands for irrelevant correctionsOs«d in
g

w8w

s1d andOs1d in g
w8w

s2d .
Denoting the contribution of the orderun,gn to the

renormalization constants8d by Zn
snd, from the condition of

cancellation of the divergencesspoles in«d in Eq. s11d, we
infer

Zn
s1d = L«fus2«gw8w

s1d g, s14d

Zn
s2d = L«fu2s4«gw8w

s2d − 2Zn
s1dus2«gw8w

s1d g, s15d

whereL« stands for the operation of extraction of the UV-
divergent part, which here consists of poles in«.

When relations12d is substituted in Eq.s14d, the UV-finite
term B does not contribute and the coefficients2e=1
+2« log s+¯ may be replaced by the unity. As a result, we
obtain

Zn
s1d =

uA

«
. s16d

Substituting this expression together with relationss12d and
s13d in Eq. s15d, we find

Zn
s2d = L«Fu2s4«S C

«2 +
D

«
D − 2u2s2«A

«
SA

«
+ BDG . s17d

In the terms,1/« we may replacesn«→1, whereas in con-
tributions ,1/«2 also the second term in the expansionsn«

=1+n« log s+¯ must be retained, which gives rise to a con-
tribution of the form «−1 log s=«−1 logsm /pd in Zn

s2d. The
presence of such a term inZn is unacceptable, because renor-
malization constants must not contain any wave-number de-
pendence by their very definition. The condition of vanishing
of the term,«−1 log s in Eq. s17d is

C = A2 s18d

for the coefficients of relationss12d and s13d.
The recent two-loop calculationf1g confirms that relation

s18d holds. Substituting it in Eq.s17d, we obtain

Zn
s2d = u2F−

A2

«2 +
D − 2AB

«
G . s19d

The one-loop coefficientA in Eqs. s16d, s17d, and s19d has
been known for quite a while,

A = −
4sd − 1d

d + 2
.

For the nontrivial next-to-leading coefficientsD andB in Eq.
s19d, integral representations readily calculable for any given
d have been obtained in Ref.f1g.

That conditions18d holds thus imposing onZn cancella-
tion of the contributions,log s is not a coincidence, but a
consequence of general principles of the theory of UV renor-
malization. The most important of them is the requirement
that all counterterms must be local in spacesi.e., polynomial

in wave vectorsd. In models4d this is so, because the coun-
terterm giving rise to the renormalization of the parametern0
has the form of np2 multiplied by a wave-number-
independent coefficient, i.e., a polynomial function inp.
Therefore, in this model all consequences of the general con-
jectures of the theory of UV renormalization must hold, in
particular independence of the renormalization constants of
wave numbers to all orders in the perturbation theory as well
as the critical scaling due to the RG equations with the
«-dependent critical dimensions of the velocity fieldw and
the frequencyv smore details are in Sec. Vd,

Dw = 1 − 2«/3, Dv = 2 − 2«/3. s20d

These are exact relations without any corrections of higher
order in «. They are a consequence of connections7d be-
tween the renormalization constantsZg andZn which, in turn,
follows from the absence of renormalization of the nonlocal
contribution with the correlation function of the random
force in actions4d. At the real value«=2, quantitiess20d
assume the Kolmogorov values

Dw = − 1/3, Dv = 2/3. s21d

Conditions18d ensuring independence of the renormalization
constant of the wave number in the MS scheme may appear
in a different form in other renormalization schemes. We will
illustrate this point in Appendix A in the example of the
scheme with the ”normalization point”sNPd. The MS and
NP schemes differ by a finite renormalization of the param-
etersg and n, therefore all objective physical quantities, in
particular critical dimensionss20d, calculated in these
schemes coincide.

Critical dimensionss20d do not depend ond and thus for
them the problem of singularities in the limitd→2 men-
tioned in Sec. I is not relevant. There are, however, other
important physical quantities such as the skewness factor,
Kolmogorov constant, and critical dimensions of various
composite operators to which this problem persists. It is im-
portant that for these quantities, the problem of anomalous
scaling is absent, which cannot be treated in the framework
of the model with massless injections3d lacking a dimen-
sional parameter to account for the external scale of turbu-
lence.

For such quantities, contrary to Eq.s20d, the solutions
contain full series of the form

Rs«,dd = o
k=0

`

Rksdd«k, s22d

and the coefficientsRksdd in the limit d→2 reveal singular
behavior of the type,sd−2d−k,D−ks2D;d−2d giving rise
to the growth of the relative part of the correction terms at
d→2. The effect of these is fairly discernable also at the real
valued=3, hence the natural desire to sum up contributions
of the forms« /Ddk at all orders of the« expansions22d. This
may be done with the aid of the doubles« ,Dd expansion
f4,5g. The idea of such an ”improved« expansion” with the
use of the local renormalization schemef5g was explained in
our Rapid Communicationf3g, where many important
subtleties and details of calculations were, however, not re-
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flected due to lack of space. In the present paper, we give a
detailed exposition and start from the proof of inconsistency
of the renormalization scheme proposed in Ref.f4g.

III. CONSTRUCTION OF THE DOUBLE „« ,D…

EXPANSION: PROOF OF THE INCONSISTENCY OF THE
NONLOCAL RENORMALIZATION [4] IN THE

TWO-LOOP APPROXIMATION

Model s4d is logarithmicsi.e., the bare coupling constant
g0 is dimensionlessd at «=0 in functions3d in arbitrary space
dimensiond. In a fixed dimensiond.2, the value«=2 cor-
responds to the ”real problem.” Calculations in the frame-
work of the« expansion have a rigorous meaning only in the
vicinity of «=0, whereas continuation of the results to the
”real” value «=2 is always understood as an extrapolation.
In the scheme applicable ford.2 reviewed in Sec. II, this
extrapolation corresponds to the continuation along the ver-
tical ray from the pointsd,«=0d to the pointsd,«=2d in the
sd,«d plane. The same final point may be reached along a ray
from any starting pointsd0Þd,«=0d at which the model is
logarithmic as well. The extrapolation along the ray starting
from the origin sd0=2,«=0d is, however, singled out, be-
cause atd=2 in models4d an additional UV divergencesab-
sent atd.2d occurs in the 1PI functionGw8w8. On such a ray
we put

d = 2 + 2D, D/« = z = const. s23d

The parameters« and D are considered small of the same
order and their ratioD /«=z a fixed constantfz=1/4 in the
extrapolation to the pointsd=3,«=2dg.

Extraction of contributions of the order«m with D /«
=const corresponds to the account of all contributions of the
form «ms« /Ddn with anyn=0,1,2… andm+n=k in Eq. s22d.
Thus the use of thes« ,Dd expansion in such a form is di-
rectly related to the problem of the account of the singulari-
ties atD→0 pointed out in the discussion of relations22d.

It is worth emphasizing that the very process of extrapo-
lation along a ray from the starting pointsd=2,«=0d is in-
applicable to description of two-dimensional turbulence in
which the physics is totally different from the three-
dimensional problem due to the appearance of the inverse
energy cascadef11g. In Fig. 1, we have plotted the borderline
curve BAC between the directsnormald and inverse energy
cascades obtained in Ref.f12g. The starting point of the ex-
trapolation for the two-dimensional casesd=2,«=0d lies in
the region of the direct cascade, whereas the final pointsd
=2,«=2d lies in the region of the inverse cascade. Thus the
ray connecting these points intersects the borderline—the
curve BAC—so that the extrapolation becomes impossible.
However, the ray connecting the starting pointsd=2,«=0d
and a final point likesd=3,«=2d lies completely in the re-
gion of the direct cascade, therefore on such a ray the prob-
lem of the change of the cascade pattern does not arise. The
rightmost point of the region of the inverse cascadespoint A
in Fig. 1d has the coordinatedA.2.06 f12g. In the preceding
discussion of the extrapolation along the vertical ray from
the pointd,«=0d to the pointsd,«=2d at d.2, it should have

been noted that the condition is not simplyd.2, but d
.dA=2.06. From the practical point of view this is irrel-
evant, because we are interested in the space dimensiond
=3.

The idea of the doubles« ,Dd expansion together with the
extrapolation along the rayD,« of relations23d in the con-
text of the present problem was first put forward in Ref.f4g.
The UV divergences are present not only in the 1PI function
Gw8w but also inGw8w8 and appear in the form of poles in the
parameters« and D and linear combinations thereof, or,
equivalently, as poles in« with the fixed ratio D /«;z
=const. To remove the additional divergences from the
graphs of the 1PI function,Gw8w8 renormalization of the am-
plitudeD0 in the nonlocal correlation function of the random
force s2d and s3d was used in Ref.f4g, i.e., relationss7d
between bare and renormalized parameters were replaced by

n0 = nZn, D0 = g0n0
3 = gm2«n3ZD,

g0 = gm2«Zg, ZgZn
3 = ZD s24d

with a new renormalization constantZD which does not have
an analog in Eq.s7d.

It should be noted that the introduction of the additional
constantZD breaks the last connection in Eq.s7d and its
consequencess20d. Therefore, the author of Ref.f4g has put
forward the conjecture that in the scheme of the double
s« ,Dd expansion at the real value«=2, the velocity fieldw
and the frequencyv have dimensions with values different
from the Kolmogorov valuess21d. This is, of course, true, if
renormalization relationss24d are used. We shall further
show, however, that the renormalization scheme of Ref.f4g
with relations s24d is not internally consistent. This is not
obvious in the one-loop approximation, to which the author
of Ref. f4g restricted himself, but becomes apparent already
in the next two-loop approximation. In Ref.f5g, another
scheme of construction of the doubles« ,Dd expansion was
put forward in which the last equality in Eq.s7d together
with its consequencess20d and s21d are preserved. We shall
deal with this approach in Sec. IV.

FIG. 1. The borderline BAC between the regions of parameter
spaced, « corresponding to directsto the right from the curve BACd
and inversesto the leftd energy cascades.
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The main goal of this section is to prove that the scheme
of multiplicative renormalizations24d contains intrinsic con-
tradictions. To this end, consider representations similar to
Eq. s11d for the 1PI functionsGw8w andGw8w8. According to
Eq. s24d, the amplitudeD0 in Eq. s10d now acquires the
additional factorZD, therefore instead of relations11d we
now obtain

uTr Gw8wuv=0

np2sd − 1d
= − Zn + us2«gw8w

s1d Zn
−2ZD + sus2«d2gw8w

s2d Zn
−5ZD

2

+ ¯ . s25d

The analogous relation for the 1PI functionGw8w8 is

uTr Gw8w8uv=0

gn3m2«p4−d−2«sd − 1d
= ZD + us2«gw8w8

s1d Zn
−3ZD

2

+ sus2«d2gw8w8
s2d Zn

−6ZD
3 + ¯ .

s26d

The expansion parameter isu=gS̄d from Eq. s9d. In Sec. II,
the quantityd was considered a fixed parameter and there-

fore it was possible to treatS̄d as a simple normalization
factor. Here,d is determined by the relations23d and in cal-

culations within the usual MS scheme the quantityS̄d should
be expanded in the small parameterD,«. Following Ref.
f4g, we shall use the modified schemeMS ssee, e.g., Ref.

f13gd, in which the quantityS̄d is treated as a whole and not
expanded inD. It is well known that the choice of scheme is
not reflected in any physically significant results.

The constantsZ are sought as series of forms8d and de-
termined from the condition of cancellation of the UV diver-
gencesspoles in « with D /«=constd in relations s25d and
s26d. Denoting byZsnd the contribution of orderun,gn in
any of these constants, we arrive at expressions similar to
Eqs.s14d and s15d: at the first order inu,g,

Zn
s1d = L«hus2«gw8w

s1d j,

ZD
s1d = − L«hus2«gw8w8

s1d j, s27d

and at the second order

Zn
s2d = L«hu2s4«gw8w

s2d + us2«gw8w
s1d fZD

s1d − 2Zn
s1dgj, s28d

ZD
s2d = L«h− u2s4«gw8w8

s2d + us2«gw8w8
s1d f3Zn

s1d − 2ZD
s1dgj. s29d

For calculation in the two-loop approximation, the following
contributions are needed:

gw8w
s1d =

A

«
+ B + ¯ , gw8w8

s1d =
A8

«
+ B8 + ¯ , s30d

gw8w
s2d =

C

«2 +
D

«
+ ¯ , gw8w8

s2d =
C8

«2 +
D8

«
+ ¯ . s31d

These are analogs of relationss12d and s13d with different
coefficients, however, which now may depend on the ratio
D /«=z.

Substituting expressionss30d in Eq. s27d, we find the one-
loop contributions to the renormalization constants,

Zn
s1d =

uA

«
, ZD

s1d = −
uA8

«
. s32d

One-loop calculation yields the following valuessfirst ob-
tained in Ref.f4gd:

A = − 1, A8 =
1

2 + z
. s33d

In the one-loop approximation, there are no problems with
log s in the constantsZ, so that the multiplicative renormal-
ization s24d appears quite acceptable.

Consider now two-loop contributionss28d and s29d. Tak-
ing into account the already known one-loop expressions
s32d, we obtain

Zn
s2d = L«Hu2s4«S C

«2 +
D

«
D + us2«SA

«
+ BDS−

uA8

«
−

2uA

«
DJ ,

s34d

ZD
s2d = L«H− u2s4«SC8

«2 +
D8

«
D + us2«SA8

«
+ B8D

3S3uA

«
+

2uA8

«
DJ . s35d

The condition of cancellation of the contributions,«−1 log s
in Eq. s34d is

4C + 2As− A8 − 2Ad = 0, s36d

and in Eq.s35d analogously

− 4C8 + 2A8s3A + 2A8d = 0. s37d

Our two-loop calculation of the coefficientsC andC8 yields

C = 1 −
1

2s2 + zd
,

C8 =
2

s2 + zds3 + zd
−

3

s3 + zd
. s38d

Substitution in relationss36d ands37d of the calculated quan-
tities s33d and s38d readily shows that conditions36d is sat-
isfied, whereas Eq.s37d is not. This means that inZn

s2d there is
no “bad” contribution ,«−1 log s=«−1 logsm /pd, while in
ZD

s2d there is such a term,

2s1 + zds4 + 3zd
s2 + zd2s3 + zd

«−1 logsm/pd, s39d

whose coefficient is the expression on the left-hand side of
Eq. s37d.

Thus within the renormalization scheme of Ref.f4g ac-
cording to relationss24d a dependence on the external wave
numbers through logs=logsm /pd appears in the renormaliza-
tion constants, which is completely inacceptable by the very
definition of the renormalization constants. It is not difficult
to understand the reason for this: in schemes24d there is a
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violation of a fundamental principle of the general theory of
UV renormalization—the requirement that all counterterms
must be localspolynomial functions of external wave vec-
torsd f13g. The introduction of the coefficientZD at the term
,w8Dw8 in action s4d with the nonlocal injection function
s3d is tantamount to introduction of a nonlocal counterterm
with the structurep4−d−2«. This feature takes the scheme dis-
cussed beyond the framework of the standard theory of UV
renormalization with such unpleasant consequences as the
appearance of thesunacceptabled dependence on wave num-
bers in the renormalization constants. This general line of
argument motivated the authors of Ref.f5g to change the
scheme ofs« ,Dd renormalization to conform to the require-
ment of the polynomial in wave-vector form of all the coun-
tertermsslocalnessd, although in the one-loop calculation of
Ref. f4g the inconsistency of the scheme proposed there does
not appear explicitly.

It might be suggested to change relations29d to exclude
the wave-number-dependent contributions39d from ZD

s2d.
Equations29d was obtained, however, from the requirement
that in the two-loop approximation all UV divergences—
poles in«—were removed from the renormalized 1PI func-
tion Gw8w8, so that any change of the form ofZD

s2d from Eq.
s29d would lead to the appearance of poles in« in the renor-
malized functionGw8w8.

The persistent opponent might say, “Who cares, I am not
interested in the two-loop approximation, I am completely
happy with the one-loop accuracy, where there are no prob-
lems.” Here, the objection would be that elimination of UV
divergencesspoles in«d to all orders in perturbation theory is
not a caprice but a compelling necessity. If such poles are
left, then there is no guarantee that results obtained at the
lowest order of perturbation theory do not acquire correc-
tions of the same order from the higher-order terms not ac-
counted forsin fact, there is conviction in the opposited, i.e.,
lowest-order calculations become completely unreliable.
Therefore, in particular, the conclusion of Ref.f4g that rela-
tions s20d are violated in thes« ,Dd scheme is not correct; in
the consistent renormalization scheme, these relations con-
tinue to holdf5g.

In conclusion, let us point out that the “bad” contribution
s39d in ZD

s2d vanishes atz=−1, i.e., atD=−« in Eq. s23d. Then
d=2+2D=2−2« and energy injections3d becomes local:
df ,p4−d−2«=p2 ssuch a model was considered in Ref.f6gd.
In this case, the multiplicative renormalizations24d conforms
to the requirement of local counterterms and the correspond-
ing constantsZ do not contain any dependence on logs in
accordance with the general theory.

IV. CONSTRUCTION OF THE „« ,D… EXPANSION IN THE
TWO-CHARGE MODEL WITH LOCAL

COUNTERTERMS: TWO-LOOP CALCULATION OF THE
RENORMALIZATION CONSTANTS

In the preceding section it was shown that in thes« ,Dd
schemes23d the multiplicative renormalizationf4g of the am-
plitudeD0 in Eq. s3d is not acceptable. The reason is that the
counterterm with structures3d is nonlocal ,k4−d−2«

=k2−2D−2« on rayss23d.

Guided by the general theory of the UV renormalization,
the authors of Ref.f5g put forward another scheme, in which
a local counterterm,k2 instead of the nonlocal one
,k2−2D−2« is used to absorb singularities from the graphs of
the 1PI functionGw8w8. This corresponds to addition of the
term,w8]2w8 to the action functional. In functionals4d with
the correlation functionD from Eqs.s2d and s3d there is no
such term, so that upon the addition of the term,w8]2w8 the
renormalization ceases to be multiplicative. This would be
inessential if our only goal was the elimination of diver-
gences from Green’s functions, which is quite possible by a
nonmultiplicative renormalization. For the use of the stan-
dard technique of the RG, multiplicative renormalization is,
however, necessary. This is why the authors of Ref.f5g pro-
posed to consider a two-charge model in which to function
s3d ,k4−d−2«=k2−2D−2« the term,k2 is added at the outset
with an independent coefficient,

dfskd = D10k
2−2D−2« + D20k

2 = g10n0
3k2−2D−2« + g20n0

3k2.

s40d

Here, the amplitudeD0 of Eq. s3d is denoted byD10. The
parametersg10 andg20 introduced in Eq.s40d play the role of
two independent bare charges.

The contribution withD20 in relation s40d corresponds to
thermal fluctuations. A model with this term only has been
analyzed earlier in Ref.f6g. In the theory of turbulence,
D20=0 should be considered the “real value” of this param-
eter, since only the first term in Eq.s40d at «=2 reproduces
the pumping of energy by large-scale eddies. It will be
shown below that vanishing of the bare parameterg20
=D20n0

−3=0 does not imply vanishing of the corresponding
renormalized parameterg2, so that in terms of renormalized
parameters, functions40d gives rise to a two-charge model.

The unrenormalized action is, as before, functionals4d,
but now with the injection functions40d instead of Eq.s3d in
the correlation functions2d. In the adopted shorthand nota-
tion

SsFd =
1

2
w8sD10k

2−2D−2« + D20k
2dw8

+ w8f− ]tw + n0]
2w − sw ] dwg. s41d

The propagatorskww8l0 andkw8w8l0 corresponding to action
s41d maintain an earlier forms5d, whereaskwwl0 is replaced
by

kwwl0 =
sD10k

2−2D−2« + D20k
2d

2n0k
2 expf− n0k

2ut − t8ug. s42d

We are interested in the region«.0 and D.0 in Eq.
s23d. In this region, in models41d the additional problem of
“L divergences” arises which was absent in models4d with
injection function s3d. Let us explain this in more detail.
Wave-vector integrals—with the shorthand notation
edk…—corresponding to the 1PI graphs discussed always
reduce to “nearly logarithmic” ones in the present set of
models. Their deviation from logarithmicity appears in the
form of factors of the typeka with a small exponenta
=2mD−2n«, wheren andm are non-negative integers. The
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exponenta is the wave-number dimension of the wave-
vector integrals obtained upon all time integrations and may
be calculated by the following simple rule: each loop integral
over wave vectors contributes a term 2D to a, the term with
D10 in Eq. s42d yields the contribution −2«−2D, but the term
with D20 does not affecta at all. Thus it may readily be seen
that if only the nonlocal term withD10 is left in Eq.s40d fi.e.,
if we return to models3dg, then all the exponentsa in the
graphs ofGw8w and Gw8w8 at «.0 andD.0 become nega-
tive. All the integrals in the limitk→` converge, they may
be carried out over the whole wave-vector space, and the
divergences appear as poles in« ,D and their linear combi-
nations.

However, in the model with injections40d—due to the
presence of the second term withD20—at D.0 wave-vector
integrals appear witha.0. They diverge in the limitk→`
and thus require an UV cutoffL. As examples we quote the
values ofa in the graphs of interest for us. In the one-loop
graphs ofGw8w: a=−2«,2D; in the two-loop graphs:a=−4«,
−2«+2D,4D; in the one-loop graphs ofGw8w8: a=−4«−2D,
−2«,2D; in the two-loop graphs:a=−6«−2D,−4«,−2«+2D,
4D.

Thus, in the two-charge models40d at D.0 s«.0 is
always impliedd, some integrals have theL divergence at
large k. To remove these divergences, an additional proce-
dure of L renormalization procedure is needed which we
shall discuss in the Appendix. At the moment, the important
point is that after theL renormalization, the limitL→` may
be taken with the result that divergences appear only in the
form of poles in « ,D and their linear combinations. The
same poles may be found within the “formal scheme,” where
all integrals are understood as an analytic continuation on the
parameters« and D from the region, where there are noL
divergences.

In our case, this is the region of«.0 and smallscom-
pared with«d negativeD,0 si.e., d,2d. In this section, we
shall consider results obtained in the framework of this “for-
mal scheme.” There is no UV-cutoff parameterL in this
scheme, but the divergences appear in the form of poles in«
with D /«=const. The goal of the renormalization is removal
of these poles. In Appendix ???, it will be shown that the
results obtained this way coincide with those obtained atD
.0 after the L renormalization and subsequent limitL
→`.

The relations of multiplicative renormalization in the for-
mal scheme are

D10 = g10n0
3 = g1m2«n3, g10 = g1m2«Zg1

,

D20 = g20n0
3 = g2m−2Dn3ZD2

, g20 = g2m−2DZg2
,

n0 = nZn, Zg1
Zn

3 = 1, Zg2
Zn

3 = ZD2
, s43d

with two independent renormalization constants for the vis-
cosity n0 and the amplitudeD20; the amplitudeD10 of the
nonlocal correlation function of the random force is not
renormalized. The renormalization constantsZn andZD2

are
found from the condition that the 1PI functionsGw8wuv=0 and
Gw8w8uv=0 are UV-finite si.e., with D /«=const there are no

poles in«d. The dimensionless expansion parameters of the
perturbation theory for these quantities are

a1 ;
D10S̄d

32n0
3p2«

, a2 ;
D20S̄d

32n0
3p−2D

s44d

with S̄d from Eq. s9d. Instead of relations10d, we now have

uTr Gw8wuv=0

d − 1
= n0p

2F− 1 + o
n1ù0,n2ù0,

n1+n2ù1

a1
n1a2

n2gw8w
sn1,n2dG ,

s45d

and the analogous expression forGw8w8,

uTr Gw8w8uv=0

d − 1
= D10p

2−2D−2«

+ D20p
2F1 + o

n1ù0,n2ù−1,

n1+n2ù1

a1
n1a2

n2gw8w
sn1,n2dG .

s46d

In terms of the renormalized variables, relationss45d and
s46d yield for the reduced dimensionless functions the fol-
lowing representations:

uTr Gw8wuv=0

np2sd − 1d
= − Zn + Zn o

n1ù0,n2ù0,

n1+n2ù1

a1
n1a2

n2gw8w
sn1,n2d, s47d

uTr Gw8w8uv=0

sd − 1dg2n3m−2Dp2 =
u1

u2
s2«+2D + ZD2

+ ZD2 o
n1ù0,n2ù−1,

n1+n2ù1

a1
n1a2

n2gw8w8
sn1,n2d,

s48d

where the expansion parametersa1 anda2 from Eq.s44d are
expressed through the renormalized parameters according to
relationss43d,

a1 = u1s
2«Zn

−3, a2 = u2s
−2DZD2

Zn
−3. s49d

Here, u1=g1S̄d/32, u2=g2S̄d/32, ands;m /p. Dependence
on « of the coefficient functionsg

w8w

sn1,n2d and g
w8w8
sn1,n2d in Eqs.

s47d and s48d is determined by relations of the form of Eqs.
s30d and s31d, in which thesz=D /«d-dependent coefficients
A, B, C, D , A8 , B8 , C8, and D8 now acquire subscripts
corresponding to the superscriptssn1,n2d of the quantities
gsn1,n2d. In the one-loop approximation, the following analogs
of relationss30d are needed:

gw8w
si,kd =

Ai,k

«
+ Bi,k, gw8w8

si,kd =
Ai,k8

«
+ Bi,k8 , s50d

with the index setssi ,kd=hs1,0d ,s0,1dj for gw8w and the sets
si ,kd=hs2,−1d ,s1,0d ,s0,1dj for gw8w8. In the two-loop ap-
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proximation, the following analogs of relationss31d have to
be included:

gw8w
si,kd =

Ci,k

«2 +
Di,k

«
, gw8w8

si,kd =
Ci,k,8

«2 +
Di,k8

«
, s51d

with the setssi ,kd=hs2,0d ,s1,1d ,s0,2dj for gw8w and si ,kd
=hs3,−1d ,s2,0d ,s1,1d ,s0,2dj for gw8w8. For calculation of
the constantsZ in the one-loop approximation, which was
carried out in Ref.f5g, only constantsA andA8 from Eq.s50d
are needed. For our two-loop calculation, all constants in
Eqs.s50d and s51d are necessary.

The constantsZn andZD2
are determined from the condi-

tion of cancellation of all UV divergencesspoles in« with
D /«=constd in Eqs.s47d ands48d. Denoting byZsnd the con-
tribution of orderun,gn with respect to the set of chargesu1
andu2 to any constant, we obtain at the first order inu,g

Zn
s1d = L«fu1s

2«gw8w
s1,0d + u2s

−2Dgw8w
s0,1dg,

ZD2

s1d = − L«Fu1
2

u2
s4«+2Dgw8w8

s2,−1d + u1s
2«gw8w8

s1,0d + u2s
−2Dgw8w8

s0,1d G ,

s52d

and at the second order

Zn
s2d = L«hu1

2s4«gw8w
s2,0d + u1u2s

2«−2Dgw8w
s1,1d + u2

2s−4Dgw8w
s0,2d + u1s

2«gw8w
s1,0df− 2Zn

s1dg + u2s
−2Dgw8w

s0,1dfZD2

s1d − 2Zn
s1dgj, s53d

ZD2

s2d = − L«Hu1
3

u2
s6«+2Dgw8w8

s3,−1d + u1
2s4«gw8w8

s2,0d + u1u2s
2«−2Dgw8w8

s1,1d + u2
2s−4Dgw8w8

s0,2d +
u1

2

u2
s4«+2Dgw8w8

s2,−1df− 3Zn
s1dg

+ u1s
2«gw8w8

s1,0d fZD2

s1d − 3Zn
s1dg + u2s

−2Dgw8w8
s0,1d f2ZD2

s1d − 3Zn
s1dgJ . s54d

Substituting expressionss50d ands52d, we find the one-loop
contributions to the renormalization constants,

Zn
s1d =

1

«
su1A1,0+ u2A0,1d,

ZD2

s1d = −
1

«
Su1

2

u2
A2,−18 + u1A1,08 + u2A0,18 D . s55d

The coefficientsA andA8 here have been calculated in Ref.
f5g. In our notation,

A1,0= − 1, A0,1=
1

z
, A2,−18 =

1

2 + z
,

A1,08 = 2, A0,18 =
1

z
. s56d

In the present work, we have carried out the two-loop calcu-
lation and determined the coefficientsB and B8 in Eq. s50d
together withC, C8 , D, andD8 in Eq. s51d. Let us quote the
coefficientsC andC8 necessary at the moment,

C2,0= 1 −
1

2s2 + zd
,

C1,1= −
2

zs1 − zd
, C0,2=

1

2z2 ,

C3,−18 =
2

s2 + zds3 + zd
−

3

3 + z
, C0,28 = −

1

2z2 ,

C2,08 = − 1 +
1

2 + z
+

3

2z
,

C1,18 =
4

zs1 − zd
+

1

1 − z
. s57d

To check the cancellation of the “bad” terms,«−1 log s in
Eqs.s53d ands54d, only terms,1/«2 from them are needed.
They are determined in Eq.s51d by the coefficientsC andC8
from Eq. s57d and in the contributions withA and A8 from
Eqs. s50d, s55d, ands56d. Substitution shows that all contri-
butions with «−1 log s in Eqs. s53d and s54d cancel as re-
quired.

A specific feature of the renormalization constantZD2
is

that it contains terms,1/u2 fsee Eq.s55dg. When such aZD2
is substituted in renormalization relationss43d in the expres-
sion for D20, terms independent ofu2 appearsgeneration
termsd,

D20
S̄d

32
= u2m−2Dn3ZD2

= n3m−2DFu2 −
1

«
su1

2A2,−18 + u1u2A1,08 + u2
2A0,18 d + ¯G .

s58d

Due to such terms, the conditionD20=0 does not lead to the
trivial conclusion u2=0, i.e., a nonvanishing value of the
renormalized charge corresponds even to the zerosreald
value of the bare charge.
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The ellipsis in Eq.s58d stands for contributions of the
two-loop order and higher, which contain terms,un/«n−1

with nù3. In the regionu,« swhere the fixed pointu* of
the RG lies, see Sec. Vd, they are of the same order in« as
the explicitly quoted one-loop contribution in Eq.s58d.
Therefore, to determine the connection between the charges
u1 andu2 imposed by the conditionD20=0 si.e., ZD2

=0d, the
two-loop calculation of the constantsZ is not sufficient. This
is unimportant, however, in the following, because in the RG

analysis of Sec. V the chargesu1 and u2 are considered in-
dependent parameters.

We shall not quote here the fairly cumbersome expres-
sions obtained by us for the constantsB, B8 , D, andD8 in
Eqs. s50d and s51d. Instead, we quote the two-loop expres-
sions for the renormalization constantsZn andZD2

obtained
with the use of them and relationss53d–s57d in the MS
schemesa detailed account of the method of calculation can
be found in Ref.f1gd,

Zn = 1 −
u1

e
+

u2

ze
−

1

2
F 4z + 3

s2 + zde
+

2z + 1

ze2 Gu1
2 − F 5z + 3

es1 − zd
+

2

s1 − zde2Gu1u2 −
1

2
F 1

ze
+

1

z2e2Gu2
2 +

1

e
Fu1

2 + 4
u1u2

s1 − zd
−

u2
2

z
GR,

s59d

ZD2
= 1 −

u1
2

eu2s2 + zd
−

2u1

e
+

u2

ze
+ F zs13 + 19zd

2s3 + zds2 + zde
+

2z + 1

s3 + zds2 + zde2Gu1
3u2

−1 −
1

2
F34z + 19 + 6z2

s2 + zde
+

sz + 4ds2z + 1d
zs2 + zde2 Gu1

2

−
1

2
F13 + 31z

es1 − zd
+

2s4z + 1d
s1 − zdze2Gu1u2 −

1

2
S 3

ze
+

1

z2e2Du2
2 +

1

e
F2

u1
3

u2s3 + zd
+ 3u1

2 + 6
u1u2

s1 − zd
−

u2
2

z
GsR− 1d, s60d

where

R= − 0.168.

This number has been obtained by a computer calculation of
a relatively simple but cumbersome twofold integral, through
which all the nontrivial two-loop contributions in Eqs.s59d
and s60d are expressed.

V. RENORMALIZATION-GROUP REPRESENTATION

The use of renormalized parameters as such does not
solve the main problem of a large expansion parameter
growing with the Reynolds number. It is, however, a neces-
sary step towards the use of the method of the renormaliza-
tion group which allows us to solve the problem by effective
resummation of the perturbation theory. We shall consider as
an example the equal-time pair correlation function

kwist,xdw jst,x8dl ; Gijsr d, r ; x − x8, s61d

which is the most interesting quantity for us in the following.
The Fourier transform of this function may be written as

Gijspd = PijspdGspd, s62d

where Pijspd is the transverse projection operator andp
;upu. Dimensional arguments lead to the following represen-
tation of the scalar functionGspd from Eq. s62d:

Gspd = n2p−d+2Rss,g1,g2d, s=
m

p
, s63d

whereR is a dimensionless function of dimensionless argu-
ments. We want to calculateGspd in the inertial range of the

wave numberp. Since in the present models3d the external
scale of turbulence has been put equal to infinity, this corre-
sponds to the regions=m /p@1. The perturbation expansion
of Gspd contains powers of the parameters whose exponents
grow without limit, due to which it is ill-suited for finding
the sought asymptotic behaviors→`. We shall briefly re-
visit the solution of this problem within the method of RG.

Since the fieldsF=hw ,w8j in the present problem are not
renormalized, the renormalized functionsWR differ from the
unrenormalized onesW=kF¯Fl only by the choice of vari-
ables and the form of perturbation expansionsg1 andg2 in-
stead ofg10 andg20d, and we may write

WRsg1,g2,n,m,…d = Wsg10,g20,n0,…d.

Here, e0;hn0,g10,g20j is the set of all bare parameters,
wherease;hn ,g1,g2j are their renormalized analogs, and
the ellipsis stands for the arguments not affected by renor-
malization such as the coordinates, times, etc. The unrenor-
malized functionsW do not depend onm, while the renor-
malized functionsWR do because of the introduction ofm in
renormalization relationss43d. The independence ofm of the

functionsW is expressed by the equationD̃mW=0. Here, and

henceforth,D̃m;m]m with fixed bare parameterse0. The

equationD̃mW=0 written in terms of the renormalized func-
tionsWR=W and their argumentse, m is the basic RG equa-
tion
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D̃mWRsg,n,m,…d = DRGWRsg,n,m,…d = 0, s64d

whereDRG stands for the operationD̃m expressed in terms of
the renormalized variables,

DRG ; Dm + b1]g1
+ b2]g2

− gnDn, s65d

whereDx;x]x for any variablex. The RG coefficient func-
tions sthe anomalous dimensionsg and theb functionsd in
Eq. s65d are defined as

ga ; D̃m ln Za, a ; hn,g1,g2,D2j,

bi ; D̃mgi,, i = 1,2. s66d

The term withDn in Eq. s64d is written with the account of
renormalization relations43d for n and definitiongn s66d.
From Eq.s66d and renormalization relationss43d, it follows
that

b1sg1,g2d = g1f− 2« − gg1
sg1,g2dg, s67d

b2sg1,g2d = g2f2D − gg2
sg1,g2dg,

gg1
= − 3gn, gg2

= gD2
− 3gn. s68d

We are interested in the infraredsIRd asymptotics of small
wave vectorsp and frequenciesv of the renormalized func-
tions WR or, equivalently, large relative distances and time
differences in thest ,xd representationfin static objects like
Eqs.s61d–s63d, dependence ont or v is absentg. It is deter-
mined by the IR-stable fixed pointg* , at whichbsg*d=0 for
all b functions. The fixed pointg* is IR-stable, if real parts of
all eigenvalues of the matrixvi j ;]bi /]gjug=g*

are strictly
positivessee, e.g., Refs.f15,16gd. Below it will be shown that
in our models41d the system of twob functions s67d and
s68d in the region of our interest«.0, D.0 has an IR-stable
fixed pointg* =hg1* ,g2*j with g1* Þ0, g2* Þ0.

In its presence it follows from the RG equationss64d that
ssee, e.g.. Refs.f16,17gd the sought asymptoticsWRuIR of the
Green functionWR has the following property of “IR scal-
ing” fin the st ,xd representationg:

uWRuIRsl−Dvt,l−1xd = ulDWWRuIRst,xd,

DW = o
F

DF, s69d

wherex is the set of all coordinate variables andt all times,
whereasl.0 is an arbitrary stretching parameter. Summa-
tion in expressions69d for DW goes over all fieldsF
=hw ,w8j entering the functionWR. In Eq. s69d, only those
arguments of the functionWR are explicitly shown which are
stretched under a given scale transformation.

The quantitiesDv andDF in Eq. s69d are critical dimen-
sions of the frequencyv and the fieldsF=hw ,w8j. They are
all unambiguously ssee, e.g.. Refs.f16,17gd expressed
through the quantitygn

* ;gnsg*d—the value of the RG func-
tion gnsgd, defined in Eq.s66d, at the fixed point,

Dw = 1 −gn
* , Dw8 = d − Dw,

Dv = 2 −gn
* , gn

* ; gnsg*d. s70d

At the fixed point withg1* Þ0 and g2* Þ0, the valuesga
*

;gasg*d of RG functionss66d are readily found from the
definition the fixed pointb1sg*d=b2sg*d=0 together with re-
lations s67d and s68d: gg1

* =−2«, gg2

* =2D, gn
* =2« /3, gD2

*

=2D+2«. Substitution ofgn
* =2« /3 in Eq. s70d leads to for-

mulas s20d and their corollariess21d for «=2. Thus, in the
two-charge models41d with the local renormalizationf5g, the
critical dimensions of the velocity fieldw and frequencyv at
the real value«=2 retain their Kolmogorov values contrary
to the conjecture of the author of Ref.f4g.

Consider again functions63d. It is a particular case of the
functionWR and satisfies the RG equations64d: DRGG=0. A
representation of the solution of Eq.s64d for Gspd convenient
for the asymptotic analysis atp→0 may be obtained with the
aid of invariant variablesē= ēss,ed corresponding to the
complete set of renormalized parameterse;hn ,g1,g2j. They
are defined as solutions of the RG equationsDRGē=0 with
the operatorDRG from Eq. s65d and the normalization con-
ditions ē=e at s=1. In terms of the invariant variables, the
solution of the RG equations64d for Gspd may be repre-
sented as

Gspd = n2p2−dRss,g1,g2d = n̄2p2−dRs1,ḡ1,ḡ2d. s71d

The right-hand side of Eq.s71d depends ons through the
invariant variablesēss,ed only, whose asymptotic behavior in
the limit s→`—determined by the IR-stable fixed pointssee
belowd—is simple: the invariant chargesḡ1 and ḡ2 tend to
fixed valuesg1* =Os«d andg2* =Os«d, whereas the invariant
viscosity has simple powerlike asymptotics. It may be con-
veniently determined by expressing the invariant variables
ē=sn̄ ,ḡ1,ḡ2d in terms of the bare variablese0=sn0,g10,g20d
and the wave numberp. According to definition, the bare
variablese0 as well as the invariant variablesē satisfy the

equationDRGe0=D̃me0=0. The connection between the two
sets of parameters is determined by the relations

n0 = n̄Znsḡd, g10 = ḡ1p
2«Zg1

sḡd,

g20 = ḡ2p
−2DZg2

sḡd, s72d

valid because both sides in each of them satisfy the RG equa-
tion, and because ats;m /p=1 they coincide with relations
s43d owing to the normalization conditions. Using the con-
nection between renormalization constantsZgZn

3=1 indicated
in Eq. s43d and excluding these constants from the first two
relations in Eq.s72d, we findg10n0

3=D10= ḡ1p
2«n̄3, and from

here

n̄ = sD10p
−2«/ḡ1d1/3,

which for the sought asymptoticss→` with the account of
ḡ1→g1* yields

n̄ → n̄* = sD10/g1*d1/3p−2«/3, s→ `. s73d

Substituting this result in Eq.s71d, we obtain
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Gspd . sD10/g1*d2/3p2−d−4«/3Rs1,g*d, s→ `. s74d

This relation will be used in Sec. VI.
Let us make a remark about relationss72d. According to

renormalization relationss43d, condition D20,g20=0 fsee
the text following Eq.s40dg imposes the constraintZD2

sgd
,Zg2

sgd=0 on the renormalized chargesg=hg1,g2j. From
the last relation in Eq.s72d it follows that the invariant
chargesḡ= ḡss,gd for any value of the variables;m /p lie
on the same constraining surfaceZg2

=0 as the initial data
ḡus=1=g. Therefore, the limit valuesg* = lims→`ḡss,gd lie on
the same surfaceZg2

=0, i.e., the conditionD20,g20=0 is
compatible with the RG analysis.

All said above is valid for any subtraction scheme; only
the explicit form of the RG functionsga in Eqs.s66d ands67d
depends on the choice of the scheme. Here, we shall quote
results of the two-loop calculation in theMS schemesSec.
IV d. A brief discussion of the modification of formulas in the
NP scheme is deferred to Appendix A. As said before, no
physically significant results depend on the choice of the
scheme.

In the MS andMS schemes, all RG functionsga are in-
dependent of«. In models41d, they depend only on charges
and the parameterz=D /«. The two-loop expressions for the
constantsZa in Eq. s66d are given by Eqs.s59d and s60d. In

calculation of the quantitiesga=D̃m ln Za from Eq. s66d, the

operationD̃m may be replaced byDRG from Eq.s64d and the
contributions withDm andDn omitted, since the quantitiesZa
do not depend onm andn. Such a calculation yields

gn = 2su1 + u2d +
2s4z + 3du1

2

2 + z
+ 2s5z + 3du1u2 − 4Rsu1 + u2d2

+ ¯ , s75d

gD2 =
2su1 + u2d2

u2
−

zs13 + 19zdu1
3

s2 + zdu2
+

2s34z + 19 + 6z2du1
2

2 + z

− 6u1
2 + s13 + 31zdu1u2 +

4s1 − Rdsu1 + u2d3

u2
+ ¯ .

s76d

Let us recall thatu1,g1 andu2,g2 are charges with a more
convenient normalizations49d, while the ellipsis stands for
corrections of orderOsu3d.

Substituting quantitiess75d and s76d in Eq. s67d, we ob-
tain expressions for theb functions in the two-loop approxi-
mation. Then from the conditionsb1sg*d=b2sg*d=0, coordi-
nates of the fixed pointsg* ,u* may be found. In the
framework of the« expansion, there are three fixed points
f5g: sid the trivial fixed pointu1* =0,u2* =0; sii d the ”kinetic”
fixed pointu1* =0,u2* Þ0; andsiii d the ”Kolmogorov” fixed
point u1* Þ0,u2* Þ0. In the region«.0, D.0 of interest
for us, only the Kolmogorov fixed point is IR-stable, for
which in the one-loop approximation

u1* + u2* =
«

3
+ Os«2d, u2* =

«

9s1 + zd
+ Os«2d. s77d

From relationss75d ands76d, two-loop contributions,«2 to
Eq. s77d may be found. We do not quote them, because co-
ordinates of a fixed pointu* ,g* do not have direct physical
meaning and do depend on the choice of the subtraction
scheme. Objective quantities independent of the subtraction
scheme are the eigenvalues of the matrixvi j =]bi /]gjug=g*

. In
our problem, thev matrix is a 232 matrix, whose two ei-
genvaluesv± in the two-loop approximation at the Kolmog-
orov fixed point are

v± = Sz +
4

3
±

Î9z2 − 12z − 8

3
De +

2

9H− 3 − 2R

− 3z ±
f4s1 + 3zdR− 6 − 12z − 9z2g

Î9z2 − 12z − 8
Je2. s78d

We quote also for reference the relatively simple expressions
for the trace and determinant of thev matrix, through which
the eigenvaluesv± are unambiguously expressed,

Tr v = v+ + v− =
2

3
s3z + 4de −

4

9
s3z + 3 + 2Rde2, s79d

detv = v+v− =
4

3
s3z + 2de2 −

4

9
s2R+ 1ds3z + 2de3.

s80d

The one-loop contributions,« in Eqs.s77d–s79d and,«2 in
Eq. s80d were obtained earlier in Ref.f5g. In the one-loop
approximation, this fixed pointg* is IR-stable in the sector
«.0, z.−2/3 in the s« ,Dd plane. When«.0 and z
,−2/3, both eigenvaluess78d are real and have different
signsfthis may be seen most easily from the one-loop con-
tribution in Eqs.s79d and s80dg. With growth of z upon in-
tersection of the borderlinez0=−2/3, both eigenvalues be-
come positive and then, upon reaching the next borderline
2s1−Î3d /3.−0.488, the argument of the root in Eq.s78d
becomes negative, i.e., the fixed point becomes an IR-
attractive focus withv±=a± ib with a.0. It remains such
until the next borderline 2s1+Î3d /3.1.821 is reached, upon
passing which the root argument in Eq.s78d becomes posi-
tive again and both eigenvaluesv± real and positive. For our
”physical” ray z=1/4sd=3d the fixed pointg* is an IR-
attractive focus.

What was said above refers to the one-loop approxima-
tion. The account of the two-loop corrections in Eqs.
s78d–s80d leads to a deformation of the borderlines of the
region of IR stability, but the ”physical” segment of rays23d
with z=1/4, 0,«ø2 still remains in this region.

VI. SKEWNESS FACTOR AND
KOLMOGOROV CONSTANT

The exponent of the power of the wave number in Eq.
s74d is determined exactly and does not have corrections in
the form of higher powers of«. At the physical value«=2,
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this exponent assumes the Kolmogorov value. To find the
Kolmogorov constant, the amplitude of this function has to
be calculated, which, however, can be done only approxi-
mately, because the corresponding« expansion does not ter-
minate. In calculation of the amplitude, apart from technical
difficulties at two-loop order, a principal problem arises as
well. It is connected with the necessity to express the answer

for Gskd in terms of the energy injection rateĒ instead of the
parameterD10 of the forcing correlations40d. The connection

betweenD10 and Ē is determined by an exact relation ex-

pressingĒ in terms of the functiondfskd in the correlation
function s2d,

Ē =
sd − 1d
2s2pdd E dk dfskd. s81d

Substituting here functions40d with D20=0 fsee the text fol-
lowing Eq. s40dg and introducing the UV cutoffkøL

=sĒ /n0
3d1/4 sthe inverse dissipation lengthd, we obtain the fol-

lowing connection between the parametersĒ andD10:

D10 =
4s2 − «dL2«−4

S̄dsd − 1d
Ē. s82d

Idealized injection by infinitely large eddies corresponds to
dfskd~dskd. More precisely, according to Eq.s81d,

dfskd =
2s2pddĒdskd

d − 1
. s83d

In view of the relation

dskd = lim
«→2

s2pd−dE dxsLxd2«−4 expsik ·xd

= Sd
−1k−dlim

«→2
fs4 − 2«dsk/Ld4−2«g,

the powerlike injection withdf =D10k
4−d−2« and the ampli-

tudeD10 from Eq. s82d in the limit «→2 from the region 0
,«,2 gives rise to thed sequences83d.

Relations82d reveals that at fixedĒ, the quantityD10 de-
pends on« and it is necessary to take this dependence into
account in the construction of the« expansion for the Kol-
mogorov constant. On the other hand, it shows that the quan-
tity Rs1,g*d from Eq. s74d must have a singularity of the
form s2−«d−2/3 in the limit «→2: only in this case will the
Kolmogorov constant in the model with the injectiondf
=D10k

4−d−2« and the amplitudeD10 from Eq. s82d have a
finite value in the limit«→2. The measurable experimental
Kolmogorov constantCK in terms of the model with such
pumping corresponds to the limiting value«=2, and we want
to define its generalizationCKs«d for the whole interval 0
ø«ø2. Obviously, such a generalization cannot be done
unambiguously, because it is not possible to define the un-
ambiguous dependence of the parameterD10 in Eq. s82d on «

at a fixed value ofĒ.
Let us explain this in more detail. When deriving relation

s82d, we assumed that integrals81d for the injection df
=D10k

4−d−2« has an upper cutoff equal to the inverse dissipa-

tive lengthL=sĒ /n0
3d1/4. Such a cutoff is natural, but at the

same time only orders of magnitude may be discussed, of
course not the exact values. Therefore, there is nothing to
prevent replacing in Eq.s82d the cutoff parameterL by aL
with a coefficienta of the order of unity, which yields the
extra factora2«−4 on the right-hand side of Eq.s82d. This
factor tends to unity at«→2, hence it does not affect the
physicalsreald value of the Kolmogorov constantCKs«=2d,
but it does affect coefficients of the hypothetical« expansion
of the function CKs«d. Generalizing these observations, it
may be stated that the physical content of the theory is not
changed, if to the right-hand side of Eq.s82d an extra factor
Fs«d with Fs2d=1 is added. In Ref.f20g ssee also
f16,17,19gd, relation s82d without the extra factorFs«d was
regarded as the definition of the quantityD10. Other ap-
proaches to the definition of the functionCKs«d and its «
expansionf21–27g may be reduced to the introduction of a
particular functionFs«d with Fs2d=1 on the right-hand side
of relation s82d.

Thus, « expansion of the Kolmogorov constant in the
model with the powerlike injection is not defined unambigu-
ously. However, physical quantities independent of the am-
plitude D10 suniversal quantitiesd do have a well-defined«
expansion. The skewness factor

S ; S3/S2
3/2 s84d

is an example of such a quantity. In Eq.s84d, Sn are structure
functions defined by the relations

Snsrd ; kfwrst,x + r d − wrst,xdgnl, wr ;
swir id

ur u
. s85d

According to Kolmogorov theory, the structure function
S2srd in the inertial range is of the form

S2srd = CKĒ2/3r2/3, s86d

whereCK is the Kolmogorov constant with a simple connec-
tion with the Kolmogorov constant of the energy spectrum
f18g. Although there is strong experimental evidence that the
Kolmogorov scalingSnsrd, rn/3 does not hold in the inertial
range for the structure functions of ordernù4, for the
second-order structure functionS2srd the experimental situa-
tion about anomalous scalingfi.e., deviation of the power of
r from the Kolmogorov value 2/3 in Eq.s86d in the inertial
rangeg is still controversial and in any case this deviation is
small f28g. Therefore, we shall use the Kolmogorov
asymptotic expressions86d for the second-order structure
function S2srd in the following analysis.

The structure functionS3srd may be found exactly in the
inertial rangef18g,

S3srd = −
12

dsd + 2d
Ēr , s87d

which allows us—with account of Eqs.s84d and s86d—to
relate the Kolmogorov constant and the skewness factor
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CK = F−
12

dsd + 2dSG2/3

. s88d

Of the three quantitiesS2srd, S3srd, and S, only S has a
unique« expansion. Thus, relations88d svalid only for the
physical value«=2d might be used to determineCK using the
calculated valueSs«=2d.

To find the RG representation of skewness factors84d, it
is necessary to have RG representations of the functions
S2srd and S3srd. The functionS2srd is connected with the
Fourier transform of the pair correlation functionGskd by the
relation

S2srd = 2E dk

s2pddGskdF1 −
sk · r d2

skrd2 Gh1 − expfisk · r dgj,

s89d

therefore its RG representation may be found on the basis of
RG representations74d. An analogous RG representation in
the inertial interval may be written for the functionS3srd. It is
more convenient, however, to use the following exact result,
an analog of expressions87d:

S3srd = −
3sd − 1dGs2 − «dsr/2d2«−3D10

s4pdd/2Gsd/2 + «d
. s90d

This relation is a manifest demonstration that the amplitude
of the structure function, expressed in terms ofD10, has a
singularity at«→2; in this case it is,s2−«d−1. On substi-
tution of Eq. s82d in Eq. s90d, this singularity cancels the
corresponding zero on the right-hand side of Eq.s82d, lead-
ing for S3srd to an expression finite at«=2 and coinciding
with Eq. s87d.

Relationss74d, s89d, ands90d might serve as the basis for
construction of the« expansion of the skewness factors84d.
However, an additional difficulty arises on this way. The
point is that the powerlike dependenceS2srd, r2−2«/3, deter-
mined from Eqs.s74d and s89d, is only valid when«.3/2,
because for«,3/2, integral s89d diverges atk→` fthis
means that the main contribution toS2srd in this case is given
by the termkwr

2st ,xdl independent ofrg. However, the de-
rivative r]rS2srd is free from this flaw, because, according to
Eq. s89d,

r]rS2srd = 2E dk

s2pddGskdF1 −
sk · r d2

skrd2 Gsk · r dsinsk · r d.

s91d

Integral s91d is convergent for all 0,«,2. On the other
hand, at the physical value«=2, the amplitudes inS2srd and
r]rS2srd differ by a trivial factor 2/3, therefore in Refs.
f1–3g for the construction of the« expansion, the following
analog of the skewness factor was used:

Qs«d ;
r]rS2srd
uS3srdu2/3 =

r]rS2srd
f− S3srdg2/3. s92d

The Kolmogorov constant and the skewness factor are

expressed through the valueQs«=2d according to Eqs.s84d,
s86d, ands87d by the relations

CK =
3Qs2d

2
F 12

dsd + 2dG2/3

, S = − F 2

3Qs2dG3/2

. s93d

Quantity s92d may be calculated both in the doubles« ,Dd
expansion and in the usual« expansion. In the former case,
the corresponding expansion is obtained on the basis of re-
lations s74d, s90d, ands91d in the form

Qs«,zd = «1/3o
k=0

`

Ckszd«k. s94d

The usual« expansion of the quantityQ for dimensionsd
.2 has been obtained in Ref.f1g,

Qs«,dd = «1/3o
k=0

`

Qksdd«k. s95d

The connection between expansionss94d ands95d is revealed
by investigation of singularities of the coefficientsQksdd in
Eq. s95d at d→2. An analysis of these singularities shows
that in the vicinity ofd−2=2D=0, these coefficients may be
expressed in a Laurent expansion,

Qksdd = o
l=0

`

qklD
l−k. s96d

Substitution of expressions96d in Eq. s95d leads to the rep-
resentation

Qs«,dd = «1/3o
k=0

`

o
l=0

`

s«/DdkqklD
l . s97d

Changing variables in Eq.s97d to « andz=D /«, we arrive at
expansions94d, in which

Ckszd = o
l=0

`

qlkzk−l . s98d

Relationss96d and s98d show that the alternative« expan-
sions s94d and s95d sum different infinite subsequences of
double sums97d. In Ref. f3g, a procedure of improvement of
the « expansion was proposed with the use of the mutually
complementary information about the quantityQ contained
in the partial sums of expansionss94d and s95d,

Q«,D
snd ; «1/3o

k=0

n−1

Ckszd«k, Q«
snd ; «1/3o

k=0

n−1

Qksdd«k, s99d

wherenù1 is the number of loops.
Terms in the double sums97d taken into account inQ«,D

snd

and Q«
snd have been schematically plotted in Fig. 2 in the

form of dashed horizontal and vertical stripes, respectively.
All terms in the dashed area will be taken into account in

the effective quantity
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Qeff
snd = Q«

snd + Q«,D
snd − dQsnd, s100d

where

dQsnd ; «1/3o
k=0

n−1

o
l=0

n−1

s«/DdkqklD
l

is a subtraction term necessary to avoid double counting of
terms with køn−1,l øn−1 sthe double-dashed square in
Fig. 2d. It may be found by taking the corresponding number
of terms from expansionss96d or s98d. From the point of
view of the usual« expansions95d, relation s100d may be
interpreted as follows: in then−1 first terms of the expan-
sion, the coefficientsQksdd from Eq. s95d are calculated ex-
actly, but in all higher-order termsskùnd they are calculated
approximately with the account ofn−1 first terms of their
Laurent expansions96d.

Our two-loop calculation of the«,D expansion of the
quantityQ together with the two-loop calculation of Ref.f1g
allowed us to obtain an improved« expansion of the quantity
Q at second order of perturbation theoryf3g. For the Kol-
mogorov constant calculated according to Eq.s93d for d=3,
it led to the result quoted in Table I.

In Table I, we have quoted for comparison the values of
the Kolmogorov constant calculated according to Eq.s93d at
first and second order of the usual« expansionsC«d, the
double« ,D expansionsC«,Dd, the contributionCd in Eq. s93d
from the correctiondQn in Eq. s100d, and the valueCeff
obtained from relationss93d and s100d. In all the cases

quoted, the recommended experimental value of the Kol-
mogorov constantCexp=2.01f29g lies between the values of
the first and second approximation. However, the difference
between these values is rather significant both in the« ex-
pansion and in thes« ,Dd expansion, let alone the leading
terms of the« expansion of the latter. For the improved«
expansion, i.e., for the quantityCeff=C«+C«,D−Cd calculated
according to Eqs.s100d ands93d, however, this difference is
about three times smaller leading to far better agreement
with the experimental data.

VII. CONCLUSION

In conclusion, we have presented a detailed comparison
of two different renormalization schemes for the stochastic
Navier-Stokes problem near two dimensions. By explicit
two-loop calculation, we have shown that the nonlocal
scheme of Ref.f4g cannot consistently be carried out beyond
the leading one-loop approximation. On the contrary, our
two-loop results confirm the consistency of the local renor-
malization scheme of Ref.f5g based on the general principles
of the theory of UV renormalization.

The detailed explicit two-loop analysis of different renor-
malization schemes presented here is all the more important,
because the inconsistent renormalization of nonlocal terms in
dynamic models continues to appear in the literaturef7,8g.

The correct choice of the renormalization scheme is vital
for a proper account of the effect on structure functions of
the additional singularities appearing in the field-theoretic
model in the limitd→2. Using the consistent local renor-
malization scheme, we have shown that a proper account of
the “nearest singularity” in the coefficients of the« expan-
sion s95d leads to a significant improvement of the results of
the two-loop RG calculation atd=3. We have analyzed the
effect of this procedure at otherd as well. It turned out to
reduce significantly the relative contribution of the two-loop
correction in the whole range considered`.dù2.5. At the
same time, this contribution remained large atd=2, which
we think to be an effect of singularities at the next excep-
tional dimensiond=1.

The proposed procedure of approximate summation of the
« expansion is, of course, applicable not only to the calcula-
tion of Qs«d, but all universal quantities such as dimensions
of composite operators.

FIG. 2. Summations in the calculation ofQeff
snd in Eq. s100d.

Terms in the double sums97d taken into account inQ«,D
snd andQ«

snd

correspond to the dashed horizontal and vertical stripes, respec-
tively. The correction termdQsnd corresponds to a sum over the
double-dashed square.

TABLE I. One- and two-loop values of the Kolmogorov con-
stant in the usual« expansionsC«d and the double«,D expansion
sC«,Dd; the contributionCd in Eq. s93d from the correctiondQsnd in
Eq. s100d; and the valueCeff from Eqs.s93d and s100d.

n C« C«,D Cd Ceff

1 1.47 1.68 1.37 1.79

2 3.02 3.57 4.22 2.37
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APPENDIX A: RENORMALIZATION-GROUP ANALYSIS
IN THE NORMALIZATION-POINT (NP) SCHEME

1. Renormalization in the NP scheme in space dimensiond.2

UV renormalization and the subsequent RG analysis may
be carried out in different variations. In the body of this
paper we have used the MS scheme due to its popularity and
because it was used in thesincorrectd nonlocal scheme of
Ref. f4g. Consistency conditions like relations18d ensuring
independence of the renormalization constant of the wave
number in the MS scheme may appear in a different form in
other renormalization schemes.

Here, we shall illustrate this point in the example of the
scheme with the “normalization point”sNPd first for the
technically simpler case of fixed space dimensiond.2. In
this approach, the renormalization constantZn is calculated
from the normalization condition for the 1PI Green function

U uTr Gw8wuv=0

np2sd − 1d
U

p=m

= − 1 sA1d

in contrast to the cancellation of poles in« in expressions11d
in the MS scheme. Then instead of Eqs.s14d and s15d, we
obtain

Zn
s1d = ugw8w

s1d ,

Zn
s2d = u2gw8w

s2d − 2Zn
s1dugw8w

s1d = u2fgw8w
s2d − 2sgw8w

s1d d2g, sA2d

and after substitution ofZn from Eq. sA2d, expressions11d
assumes the form

uTr Gw8wuv=0

np2sd − 1d
= − 1 +u gw8w

s1d ss2« − 1d + u2fgw8w
s2d ss4« − 1d

− 2sgw8w
s1d d2ss2« − 1dg + Osu3d. sA3d

In the NP scheme, the renormalization constantZn does not
depend ons=m /p due to the very definition, but cancellation
of poles in « is not obvious in Eq.s11d. In the two-loop
approximationsA3d with account of expressionss12d and

s13d, these poles appear in the form,u2«−1 log s in several
contributions, and the condition of their mutual cancellation
is the same relations18d which ensured the cancellation of
the “bad” contributions,u2«−1 log s in Zn in the MS
scheme. As it was previously explained, fulfillment of con-
dition s18d is guaranteed by general theorems of the theory
of UV renormalization with local counterterms.

The MS and NP schemes differ by a finite renormalization
of the parametersg and n, therefore all objective physical
quantities, in particular critical dimensionss20d, calculated in
these schemes coincide.

2. Renormalization in the NP scheme for the
double „« ,D… expansion

Let us start by briefly discussing the possibility to carry
out a nonlocal renormalization in the NP scheme. Relations
s24d between the renormalized and bare parameters would be
preserved in this case, whereas the two independent renor-
malization constantsZn andZD2

should be determined from
the following normalization conditions atp=m for the 1PI
functionsGw8w s25d andGw8w8 s26d:

U uTr Gw8wuv=0

np2sd − 1d
U

p=m

= − 1,

U uTr Gw8w8uv=0

gn3m2«p4−d−2«sd − 1d
U

p=m

= 1. sA4d

The problem of the dependence of the renormalization con-
stants on the wave number is absent in such a setup. How-
ever, it may be readily checked that conditionss36d ands37d
remain necessary to ensure the absence of UV-divergentsat
«→0d contributions,u2«−1 logsm /pd in the renormalized
Green functionsGw8w and Gw8w8 for arbitrary values of the
wave numberp.

In the approach with local counterterms, the renormaliza-
tion constantsZ in the NP scheme are determined—instead
of the single condition of Eq.sA4d—by the two normaliza-
tion conditions

U uTr Gw8wuv=0

np2sd − 1d
U

p=m

= − 1,

U uTr Gw8w8uv=0

gn3m2«p4−d−2«sd − 1d
U

p=m

=
u1

u2
+ 1, sA5d

with Gw8w from Eq. s47d andGw8w8 from Eq. s48d. From here
the renormalization constantsZn and ZD2

in the NP scheme
follow in the form

Zn = 1 +S−
1

e
−

3

2
z + cDu1 + S 1

ze
+ c +

3

2
Du2 + FS− 1 −

1

2z
D 1

e2 + S2c − 3z + R− 2 +
c − 1

z
D1

e
Gu1

2

+ F 2

sz − 1de2 + S6 + 2c −
2

z
− 4

R− 2

z − 1
D1

e
Gu1u2 + S−

1

2z2e2 −
2 + R+ c

ze
Du2

2, sA6d
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ZD2
= 1 +Fc −

1

s2 + zde
−

7

2
+

5

s2 + zdGu1
2

u2
+ S2c −

2

e
− 5z − 2Du1 + Sc +

3

2
+

1

ze
Du2 + FS 5

3 + z
−

3

2 + z
D 1

e2

+ S12 − 2c +
− 68 + 2R

3 + z
+ 3

c + 8

2 + z
D1

e
Gu1

3

u2
+ FS2c − 1 −

1

z
−

3

4 + 2z
D 1

e2 + S3R− 2z − 10 +
2c − 2

z
+ 3

4 + c

2 + z
D1

e
Gu1

2

+ FS 5

z − 1
−

1

z
D 1

e2 + S16 + 4c +
c − 4

z
+

28 − 6R

z − 1
D1

e
Gu1u2 + S−

1

2z2e2 −
2 + R+ c

ze
Du2

2, sA7d

whereR=−0.168 andc=0.2274 are constants found by nu-
merical integration. These are analogs of expressionss59d
and s60d for the renormalization constants obtained previ-
ously in the MS scheme. It may be readily checked that
expressionssA6d and sA7d differ from Eqs. s59d and s60d
only by a UV-finite renormalization of the parametersn , u1,
andu2.

In the NP scheme, in contrast with theMS scheme, the
renormalized Green functions have an analytic dependence
on the set of parameters« and D, i.e., they do not have
factors of the typea«+bD in the denominators. This is in
accord with the general ideas of the theory of analytic renor-
malizationf14g.

In the constantsZ of theMSscheme with a fixed value of
z;D /«=const, the dependence on« is present only in the
form of poles 1/«, 1 /«2, etc. Contrary to this, in the con-
stantsZ of the NP scheme, regular terms,1, « ,«2, etc. are
added to the poles in«. For calculation of the RG functions
and the correction exponentsv in Sec. V on rayss23d with
z=D /«=const to the order«2, only terms of order 1/« and 1
are required in the one-loop contributions,u to Z, whereas
in the two-loop contributions,u2 only terms of order 1/«2

and 1/« are needed. ExpressionssA6d and sA7d are quoted
just with this accuracy.

The two-loop expressionssA6d andsA7d for the constants
Z with the necessary accuracy together with definitionss66d
give rise to the following expressions for the RG functions
ga:

gn = s2 + 3D − cedu1 + s2 + cD + 3Ddu2 − 4su1 + u2d2s2R+ 1d,

sA8d

gD2
=

u1
2f2 + s7 − cdD + s4 − 2cdeg

u2
+ 2f2 + 5D + s2 − cdegu1

+ f2 + s3 + cdDgu2 − 4
su1 + u2d3s2R+ 1d

u2
, sA9d

where the notation is the same as in Eqs.sA6d andsA7d. The
RG functionssA8d andsA9d, contrary to their analogs in the
MS scheme, do not contain factors likez+const in denomi-
nators, i.e., they are analytic in the pair of parameters« ,D,
which is a consequence of similar analyticity of the renor-
malized Green functions. Coordinates of fixed pointsu*
,g* obtained from Eqs.sA8d and sA9d in the one-loop

approximation keep the form of Eq.s77d, but the two-loop
contributionsswhich we do not quoted differ from analogous
contributions in theMS scheme. The eigenvaluesv± of the
matrix v, however, remain exactly the same as in theMS
scheme, because these quantities do not depend on the sub-
traction scheme.

In conclusion, we note that in an attempt to use the NP
schemesA4d in the modelf4g with nonlocal renormalization,
the inconsistency of this model in terms of the RG functions
ga would appear in the form of poles 1/« in the two-loop
contributions.

APPENDIX B: L RENORMALIZATION AND „« ,D…

EXPANSION ABOVE TWO DIMENSIONS

As was explained in Sec. IV, in the two-charge models41d
in some graphs the wave-vector integrals diverge at large
wave numbers. To regularize such integrals, it is necessary to
introduce a cutoff parameterL. This may be done, e.g., by
restricting Fourier components of the velocity fieldw to
wave numbers less thanL in functional s41d, which auto-
matically brings about the corresponding sharp wave-vector
cutoff in the bare response functions5d and in the bare cor-
relation functions42d. It was already explained in Sec. IV
that all suchL divergences are “nearly logarithmic” and ap-
pear in the results in the form of powersLa with small sof
the order of« for D /«=constd positive exponentsa.

The elimination of theL divergences may be reduced to a
renormalization of the bare parameters. Denoting for brevity
the whole set of parameters bye, we introduce the notion of

“primary bare parameters”ẽ0=hñ0,D̃i0= g̃i0ñ0
3, i =1,2j and

“secondary bare parameters”e0=hn0,Di0=gi0n0
3, i =1,2j ssee

Ref. f16gd. The original model is defined by a functional of
the type of Eq.s41d with the L cutoff introduced and with
the “primary bare parameters”ẽ0,

SsFd = w8sD̃10k
2−2D−2« + D̃20k

2dw8/2

+ w8f− ]tw + ñ0]
2w − sw ] dwg. sB1d

Renormalization of this model may be carried out in two
steps: the first is theL renormalization with the aim of re-
moval of allL divergences. This amounts to a reorganization
of the bare parametersẽ0→e0, in which the secondary set of
parameters is expressed as functions of the primary set,
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e0=e0sẽ0,Ld, and vice versa,ẽ0= ẽ0se0,Ld. The correspon-
dence between the two setsẽ0 and e0 is bijective perturba-
tively, therefore any of them may be chosen as the set of
independent variables.

If the parameterse0 are chosen as independent, then in the
Green functionsG of model sB1d expressed in terms ofe0
and L, there will be noL divergences leftsthey all will be
concentrated in the formulas connectingẽ0 and e0d and the
limit L→` may be taken in them with the result of elimi-
nating the cutoff parameterL completely from the theory. A
trace of the UV divergences which brought about the positive
powers ofL remains, however, in the form of singularities in
« in the L-renormalized quantities. This happens because in
theL renormalization, only terms strictly growing as powers
of L are removed and collected in the renormalization con-
stants. These terms contain singularities in« andD, although
the unrenormalized quantities with fixedL were regular
functions of« and D. Consequently, in theL-renormalized
quantities there must be terms left which are singular in«
and D, but remain finite in the limitL→`. Thus, theL
renormalization is a way to trade UV divergences in the form
of positive powers of the UV cutoffL for poles in« ,D and
their linear combinations in such a way that in the
L-renormalized quantities, the limitL→` may be taken.

The basic conjecture is that the results obtained in this
manner for the graphs of the Green functionsGse0,L
=` ,…d sthe ellipsis stands for the rest of the arguments,
such as frequencies and wave vectorsd are exactly the same
as those obtained in the “formal scheme,” i.e., by analytic
continuation of all integrals withoutL divergences on the
parameterD from the region of smallD,0 smore accurately
−2«,D,0d. In this scheme, the unrenormalized action is
functional s41d. Such an analytic continuation might be car-
ried out without any reference to the model regularized with
the explicit wave-number cutoffL, which is common prac-
tice in field theories of particle physics. There, however, it is
the renormalized parameters which are the physical ones,
and their bare counterparts together with the UV cutoff are
unphysical auxiliary quantities. In our case, unrenormalized
parameters are the physical ones and therefore it is impor-
tant, in principle, to keep track of their relation to thesaux-
iliaryd renormalized parameters, because the fixed-point val-
ues of the latter remain in the asymptotic expressions for
various correlation functions and the like.

The next step after theL renormalization is the« renor-
malization with the goal of removal from all Green functions
Gse0,L=` ,…d poles in« for D /«=const. It is carried out by
the transition from the “secondary bare parameters”e0 sthe
same notation was used in Sec. IVd to the renormalized pa-
rameterse=hn ,g1,g2j according to relationss43d.

The procedure of the« renormalization was discussed
thoroughly in Sec. IV. Let us now explain in more detail the
procedure of theL renormalization: the transition from the
primary bare parametersẽ0 to the secondary bare parameters
e0. We emphasize that at this stage, we are interested in theL
divergences only and regard« and D as fixed parameters
without any investigation of singularities in these parameters
tending to zero. We shall consider the parametersẽ0 in the
graphs of the functionsG of model sB1d expressed in terms

of e0 andL through the renormalization relations

D̃10 = g̃10ñ0
3 = g10n0

3 = D10,

D̃20 = g̃20ñ0
3 = g20n0

3Z̃D2
= D20Z̃D2

,

g̃10 = g10Z̃g1
, g̃20 = g20Z̃g2

,

ñ0 = n0Z̃n, Z̃g1
Z̃n

3 = 1, Z̃g2
Z̃n

3 = Z̃D2
, sB2d

similar to Eq.s43d. The dimensionless renormalization con-

stantsZ̃ in Eq. sB2d are functions ofe0 andL expressed in
the form of series inDi0,gi0. The corresponding dimension-
less expansion parameters are the following analogs of Eq.
s44d:

ã1 ;
D10S̄d

32n0
3L2«

, ã2 ;
D20S̄d

32n0
3L−2D

. sB3d

Therefore, the constantsZ̃ in Eq. sB2d assume the form

Z̃n,D2
= 1 + o

n1ù0,n2ù1
Cn,D2

sn1,n2dã1
n1ã2

n2 sB4d

with the dimensionless coefficientsCn,D2

sn1,n2d depending on«
and D /«=z only sbut in a singular mannerd. In expansion
sB4d, not all possible terms are included, but only those
which are “L divergent,” i.e., those with a positive power of
L in the productã1

n1ã2
n2. From Eq.sB3d it follows that

ã1
n1ã2

n2 , La, a = 2sn2D − n1«d, sB5d

therefore, for«.0,D.0, in the L-divergent terms witha
.0 in Eq. sB4d the inequalityn2ù1 holds, i.e., at least one

factor with D̃20,D20 from Eq. sB1d is present.
From this it follows, in particular, that to the real value

D̃20=0 in Eq.sB1d fsee the text after Eq.s40dg it corresponds
D20=0 in Eq.s41d, which justifies the derivation of Eq.s82d
from Eq. s81d in models41d. We also note that the operation

D̃m in Eq. s66d, defined in Sec. V asD̃m;m]m with fixed
parameterse0, in terms of modelsB1d has to be understood
asm]m with fixed ẽ0 andL. These definitions are equivalent,
because the parameterm does not enter in renormalization
relationssB2d.

For the L renormalization sB2d, analogs of relations

s45d–s48d may be written and the correspondingZ̃ calculated
at two-loop order. We shall not quote the corresponding re-
sults, because explicit expressions connecting the primary
sẽ0d and secondaryse0d bare parameters are unimportant for
the RG analysis of the IR asymptotic behavior in Sec. V,
which is carried out in terms of bare parameterse0 and renor-
malized parameterse.

In the NP schemessee Appendix Ad, the normalization
conditionsA5d may be imposed in theL-renormalized model
in the same way as just described for the MSsor MSd
scheme. It is not difficult to see, however, that in the NP
scheme the very procedure of theL renormalization is actu-
ally not necessary. The point is that in this scheme from the
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quantity to be renormalized its value at the normalization
point is subtracted which automatically leads to a quantity
without any UV divergences and thus with a finite—and
regular in « and D—limit, when L→`. For renormalized
correlation functions, the result is the same as afterL renor-

malization, subsequent limitL→`, and final renormaliza-
tion in the NP scheme. Therefore, the RG functionsg andb
are also the same, since their expressions in terms of the
renormalized correlation functions coincide in both cases.
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