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An improved e expansion in thel-dimensional(d>2) stochastic theory of turbulence is constructed at
two-loop order, which incorporates the effect of pole singularitie-at2 in coefficients of the expansion of
universal quantities. For a proper account of the effect of these singularities, two different approaches to the
renormalization of the powerlike correlation function of the random force are analyzed near two dimensions.
By direct calculation, it is shown that the approach based on the mere renormalization of the nonlocal corre-
lation function leads to contradictions at two-loop order. On the other hand, a two-loop calculation in the
renormalization scheme with the addition to the force correlation function of a local term to be renormalized
instead of the nonlocal one yields consistent results in accordance with the ultraugletenormalization
theory. The latter renormalization prescription is used for the two-loop renormalization-group analysis
amended with partial resummation of the pole singularities near two dimensions, leading to a significant
improvement of the agreement with experimental results for the Kolmogorov constant.
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[. INTRODUCTION term and improvement of the agreement with experiment.
The calculation in Ref[3] has been carried out in the two-

The renormalization-groufRG) method in the theory of loop approximation for both the usualexpansion and the
turbulence allows us to calculate various physicaldouble (¢,A) expansion. These expansions were used as
quantities—critical exponents and universal amplitudecomplementary to each other to arrive at the final result—an
ratios—in the form of an expansion in a small parameter approach distinguishing Reff3] from Refs.[4,5], in which
The real value of this parameter is not small, however, therethe one-loop calculation in the,A) expansion was carried
fore justified doubts arise as to whether this method is of anyput.
use for acceptable numerical estimates of the quantities stud- In Ref. [4], where the idea of the double expansion and
ied. Until recently, practical calculations were carried outsubsequent extrapolation of the results from the starting
only in the simplestone-loop approximation and therefore point d=2,e=0 to the physical poind=3,s=2 was first
it was not possible to assess how the next-to-leading terms @ipplied to the stochastic Navier-Stokes problem, as well as
the expansion actually compare with the leading order at théater in Ref.[5], this expansion was used as an alternative to
real value of the parameter=2. In Refs.[1,2], this problem the usuale expansion ati>2. The reason for the attention
was analyzed in the example of calculation of the skewnespaid to this approach was that in this scheme—in contrast to
factor and the Kolmogorov constant in the inertial range. Theahe usual way of renormalization in the model with> 2,
calculation showed that the relative part of the two-loop.where only one quantity, the coefficient of viscosity, is
correction is indeed large, of the order of 100% in the reakenormalized—another quantity, the random force, must be
space dimensioml=3. This contribution, however, rapidly renormalized as well. Therefore, it was definitely of interest
decreases with the growth aof already ford=5 it yields to find out the consequences of this new physical factor. The
only 30% and in the limitd— < it decreases to 10%. On the results of Refs[4,5] in this respect, however, are drastically
contrary, when the space dimension decreases tte® to  different due to different approaches to the renormalization
d=2, a drastic growth of the correction term is observed. of the random force.

Analysis of the dependence of the coefficients of the Renormalization of the random force was introduced in
expansion on the space dimension has revealed that ths$ochastic hydrodynamics already in Rf], devoted to an
property is connected with the divergence of some graphs ianalysis of the kinetics of near-equilibrium hydrodynamic
the limitd— 2, and the singularities id—2=2A accumulate fluctuations, but there it was of the usual multiplicative char-
with the order of the perturbation expansion. Contributionsacter. In Ref[4], an analogous renormalization was applied
of these graphs turned out to give rise to the large value ofo the stochastic theory of turbulence with an unexpected
the correction term also a=3. Thus, satisfactory quantita- result: violation of the Kolmogorov hypothesis of the inde-
tive results may be expected only after summing, at leagbendence of correlation functions of viscosity in the inertial
approximately, the contributions of the most singular graphsange was predicted. In Rg6], the renormalization scheme
at all orders of thes expansion. Such a summation has beerused in Ref[4] was criticized and a more complex scheme
carried out in Ref[3] with the use of an additional renor- put forward with results corroborating the Kolmogorov hy-
malization and double expansion inand A and with the pothesis. Thus, the problem of the correct choice of the
result of a significant relative reduction of the correctionrenormalization scheme turned out to be crucial in the use of
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the double expansion. In the body of the present paper, provede expansion are exposed in Sec. VI. Section VII con-
detailed analysis of this issue shall be given, while here weains discussion of the results and concluding remarks. Ap-
limit ourselves to a brief commentary. pendix A contains an overview of the two-loop RG analysis
Although renormalization of a model is usually carried in a scheme in which renormalization is fixed—instead of
out in perturbation theory order by order, it is always implied extracting only UV-divergent contributions from perturbation
that .Certa..in rel.ations h0|d to a.” _Ol‘d'el’S. V|0|at|0n Of' SUCh expansion_by normalization conditions imposed on correla-
relations in an incorrect renormalization appears in differention and response functions. Finally, the fairly technical issue
ways in different renormalization schemes, but it is always &y the possibility of analytic continuation of the results ob-

sign of inherent inconsistency of the scheme rendering ityined ford<2 to space dimensions above 2 is discussed in
useless for applications. One of the main conditions of Con'Appendix B

sistency of UV renormalization is that counterterms used to
remove the divergences are local in space and time: they
have to be polynomials in fields and their derivatives, or—in 1. RENORMALIZATION OF THE MODEL IN A FIXED

the Fourier representation—polynomials in frequencies and SPACE DIMENSION d>2
wave vectors. As was pointed out in RE5), it was just this . )
condition that was violated in Reff4] when a multiplicative The statistical model of the developed homogeneous iso-

renormalization of the random force was carried out, in analtropic turbulence of incompressible fluid is based on the sto-
ogy with Ref.[6]. The point is that in Ref.6] the correlation ~ chastic Navier-Stokes equation

function of the random force was proportional to an integer

power ofk? (k% in model A andk® in model B so that the Vigi = e =GP+, Vi=d+(ed). (1)
renormalization corresponding to stretching of it was tanta- . . N

mount to introduction of local counterterms. In RE£], on  Here ¢i(t,x) is the divergenceless velocity fiel@(t,x) and

the contrary, this correlation function is proportional to a fi(t,X) are the pressure and the transverse random force per
noninteger power ok2 and it is thus nonlocal, which renders Unit mass, respectively, ang is the kinematic viscosity. For
multiplicative renormalization inconsistent. The solution of the random forcé, a Gaussian distribution is assumed with
the problem put forward in Ref5] is, in fact, nonmultipli- ~2€r0 mean and the correlation function

cative renormalization of the random force: the introduction

of the counterterms necessary to remove divergences doé§ (LX) fi(t',x")) = Dj(t.x;t",x")

not correspond to stretching of the original nonlocal correla- St-t) . ,
tion function of the random force but to adding a local term = 2m dk Pj;(k)ds(k)exdik (x =x")],
to it.

In the one-loop approximation, to which the authors of 2

Refs.[4,5] restricted themselves, it is possible to remove the _ 9 L
divergences of the graphs both in the nonlocal renormaliza/N€rePij(k)=4;—kkj/k" is the transverse projection opera-
tion scheme of Refl4] and in the local scheme of REE] tor andd is the dimension of the coordinate space. For the
so that at this level both approaches seem equally acceptabfenction di(k), the. following powerlike form is adopted in
The two-loop calculation carried out in the present papefh® RG approach:

yields a direct confirmation that only the local scheme of
Ref.[5] is consistent—in accord with the general statements
of the renormalization theory. In the present paper, we pa : . i
considerable attention to this issue, because the nonlocﬁgﬁsﬁ(;]:gtgyasr:e?elrn 'Fr?é(\?;lﬁlea)éso:rheesgglr? dggat(];o':?e a:oﬁ;sical
scheme has been repeatedly applied in fairly recent literatu - X o .

[7,8]. Atechnical account of the method, which allowed us to odel ise=2, because foe—2, Do~ (2-¢), we arrive at

obtain the two-loop results announced @, is given here as (K~ k), which corresponds to energy injection by infi-
well ’ nitely large eddies.

This paper is organized as follows. In Sec. Il, we recall The stochastic problentl) and (2) is equivalent to a

basic features of théield-theoreti¢ renormalization proce- quantum-field-theoretic model with a doubled set of trans-

dure and the subsequent asymptotic analysis in the two—loo¥)erse vector field>={¢, ¢’} and the actiori9,10

approximation well above the problematic two dimensions. o, - B
Section Il is devoted to a detailed argument showing why S(®) = ¢'De' 2+ ¢'[= dip + vode = (9 )¢l (4)

iche mul;cllphc?t![\r/]e r;lonlglcal renormallz?tlosn fa|I|§/atththe WO~ \vhereD is the correlation function of the random fora,
tZ(r)ch) Orofe;h?a Iogal Otl\jvo(-ecﬁgf aensrlggc.)rraalii(a:.tior{ sfhggwneSIiSs-and the necessary integrals oV&ix) and sums over vector

y 9 .~ ndices are implied. Action(4) gives rise to the standard
demonstrated by the results of the two-loop calculation in

space dimensionsl<2 in which the technically simplest diagrammatic technique with the bare propagators whose

combined scheme of analytic and dimensional renormaliza(-t’k) representation is of the form

tion is unconditionally valid. Renormalization-group equa-
tions are set up in Sec. V with the subsequent two-loop so-
lution for asymptotic analysis in the inertial range. Details of
the method of calculation of universal quantities in the im- (p'@")=0, (5)

di(k) = Dok 92, (3)

(p() e’ (t'))o= Ot —t")exd — vok?(t— t')],

036305-2



IMPROVED e EXPANSION FOR THREE-DIMENSIONAL TURBULENCE:.. PHYSICAL REVIEW E 71, 036305(2005

d(k) ) ) In the MS scheme, the renormalization constants are con-
(pg)o= mexﬂ‘ vok?lt = t'[], structed as Laurent series énof the form "1+3,_,a,e ™.
0 In particular,
where the common factd?;;(k) has been omitted for sim- - n
plicity. The interaction in Eq(4) brings about the three-point 7 _ ¢ P EO uz(a_222+ a_21> bz 140 age,
vertex o' (¢d)e=¢; Vijspjes/ 2 with the vertex factoV € € € = k=1
=i(kjSs+ksdj), wherek is the wave vector of the fielg'. ®)
The expansion parameter of the perturbation theory is the
coupling constangy=Dy/ 3. where
Model (4) is logarithmic(i.e., the coupling constamy, is
dimensionless at £=0. In the analytic renormalization S 27972

g_ JES—
scheme adopted here, the UV divergences have the form of u= 32" Si= 2m) r(d/2)’ 9
the poles ine in the correlation functions of the field

={p, ¢'}. Dimensional analysipower countinyshows that and the coefficients,, depend only ond. Here S is the

for d>2, superficial UV divergences can be present only insurface area of the unit spheredrdimensional space arld

the one-particle-irreducibl€lPl) functionsI',,, and T/ . is Euler’'s Gamma function.

These divergences may be removed by counterterms of the \We shall determine the constazit from the requirement

form that the 1PI correlation functiofi,, at zero frequencyw
=0) is UV-finite, i.e., finite ate—0 when expressed as a

¢'Fo, ¢'ap. ¢'(ed)e (6) function of the renormalized variablesandg determined by

relations (7). With respect to vector indices, the function

in the action. Due to symmetry reasons, howeV(_er, in mod », iS proportional to the transverse projecRy(p), where
(4) only one counterterm of all allowed by the dimensional

vsis i I X h il 1Yo is the external wave vector. In the following, we shall deal
analysis is actually generated. First, the spatial derivativgit the scalar coefficient of this projector obtained by the

acting on the fieldp in the interaction term of actio) can  ,ntraction of the indices andj and division by TiP=d
be transferred to the fielg’ with the use of integration by ~1. In terms of the bare parameters and Do:gov3, this
parts. This means that the counterterms to the 1PI functionS.giar coefficient atv=0 assumes the formv§p2+s?1m of
must contain at least one spatial derivative, so that the strugsyntributions of then-loop graphs, each of which contains

ture ¢’ d,¢ cannot possibly appear. Second, from the Galilea ieces of lines (5) and. correspondinaly. the factbr
symmetry of actior(4) it follows that the last two structures rE’hus in f/(ipegfz/oof dinge)nsion'al argu§1ents g o
e 1 1

of Eq. (6) can be brought about as counterterms only in th

invariant combinationy’ V,¢ with the Lagrangian derivative T, o s \"
V.=d+(@d) from Eq. (1). This excludes also the structure _eele=0 vop?| —1+> (%) ™ 1 (10
¢'(¢pd)e. Thus, in the generic case we are left with a single d-1 ne1 \ 32vpp=/) T¢¥

counterterm of the formp’#¢. In the special case=2, o _ .
however, a new UV divergence appears in the 1P| functiorvvith dimensionless coeff|C|_enté¢,‘p which only depend oud

Fogr o _ ande. The factors 32 and, in Eq. (10) have been intro-
Consider the renormalization of mod@) in the two-loop  duced for convenience. To obtain the renormalized function

approximation ind>2. In this case, the only counterterm I, the parameter®, and v, in Eq. (10) have to be ex-

required is ¢’¢, which is generated by multiplicative pressed in terms of, g, and according to definition€7),

ren_ormahzatlon of the viscosity in the corregpondmg terr_n ofwhich leaves the coefficient;;(”,) intact. It is convenient to
action(4). We shall use the scheme of minimal subtractions . L

. 5 : . . i
(MS) in which the renormalization constants are determine i;wde the result byp”to arrive at the dimensionless quan
by the relations y

TrF¢,¢|w:O ~

Vo= Vzw DO = gng = g/“LZ8 V31 sz(d _ 1) -

_ e (1) 5-2 2.2 -5 ...
Z,+us®y,, 2,0+ (us*) Py, 2,0+

Q=472 Z,=Z @) v
) ) ) with u from Eq.(9) ands= u/p.

Here,u is the scale-setting parametéine reference masm The renormalization consta@t, is determined from the

the MS schemey is the renormalized viscosity, amgis the  congition of cancellation of the poles inin relation(11). In

dimensionle;s renormaliged Ch?‘fge- The only ind_epende%e coefficienty<l,) , there is a simple pole-1/¢, whereas
renormalization constant in E(j7) is that of the viscosity,. @) i e 5

The amplitude of the correlation function of the random 7, CONtains poles-1/s and~1/¢% etc. For the two-loop
force Dy is not renormalized, because no counterterm of the&alculation ofZ,, the following contributions are needed:

form ¢’ ¢’ in action (4) is necessary. This leads to the rela-

tion between the renormalization constants of the charge and 7,(11) — A +B+ .- (12)
viscosity indicated in Eq(7). e g '
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o (13

where the ellipsis stands for irrelevant correctidd@) in
7;1’)4) andO(1) in yfpz,)(p.

Denoting the contribution of the ordeu"~g" to the
renormalization constar(8) by Z(V“), from the condition of
cancellation of the divergencépoles ing) in Eq. (11), we
infer

z0 = L,[usey) ], (14)

22 = £,[uPs%y?) - 220usey ) ], (15)

where £, stands for the operation of extraction of the UV-

divergent part, which here consists of polesin
When relation(12) is substituted in Eq(14), the UV-finite
term B does not contribute and the coefficiesté=1

PHYSICAL REVIEW E 71, 036305(2005

in wave vectors In model(4) this is so, because the coun-
terterm giving rise to the renormalization of the parameter
has the form of vp° multiplied by a wave-number-
independent coefficient, i.e., a polynomial function pn
Therefore, in this model all consequences of the general con-
jectures of the theory of UV renormalization must hold, in
particular independence of the renormalization constants of
wave numbers to all orders in the perturbation theory as well
as the critical scaling due to the RG equations with the
e-dependent critical dimensions of the velocity fieddand

the frequencyw (more details are in Sec.)VY

A,=1-2:/3, A,=2-2¢l3. (20

These are exact relations without any corrections of higher
order ine. They are a consequence of connect{@h be-
tween the renormalization consta@sandZ, which, in turn,
follows from the absence of renormalization of the nonlocal
contribution with the correlation function of the random

+2¢ log s+--- may be replaced by the unity. As a result, we force in action(4). At the real valuee=2, quantities(20)

obtain

uA

zZV=— (16)
&

Substituting this expression together with relatighg) and
(13) in Eqg. (15), we find

C D AlA
Z(VZ) :/js{uzs“&(—z + —> - ZUZSZE—(_ + B):| . (1)
£ £ g\e

In the terms~1/¢ we may replace™ — 1, whereas in con-
tributions ~1/¢2 also the second term in the expansiif

assume the Kolmogorov values
A,=-1/3, A,=2/3. (22

Condition(18) ensuring independence of the renormalization
constant of the wave number in the MS scheme may appear
in a different form in other renormalization schemes. We will
illustrate this point in Appendix A in the example of the
scheme with the "normalization poin{NP). The MS and

NP schemes differ by a finite renormalization of the param-
etersg and v, therefore all objective physical quantities, in
particular critical dimensions(20), calculated in these
schemes coincide.

=1+ne log s+- - must be retained, which gives rise to a con-  Critical dimensiong20) do not depend od and thus for
tribution of the forme tlogs=stlog(u/p) in Z?. The  them the problem of singularities in the limit—2 men-
presence of such a term i), is unacceptable, because renor-tioned in Sec. | is not relevant. There are, however, other
malization constants must not contain any wave-number ddmportant physical quantities such as the skewness factor,
pendence by their very definition. The condition of vanishingkolmogorov constant, and critical dimensions of various

of the term~¢logsin Eq. (17) is

C=A? (18)

for the coefficients of relation€l2) and(13).
The recent two-loop calculatigri] confirms that relation
(18) holds. Substituting it in Eq(17), we obtain

2 p-
22 = uz{_ Ay Mﬂ _
& &

(19
The one-loop coefficiend in Egs.(16), (17), and(19) has
been known for quite a while,

_ 4(d-1)

T od+2

For the nontrivial next-to-leading coefficierdsandB in Eq.

composite operators to which this problem persists. It is im-
portant that for these quantities, the problem of anomalous
scaling is absent, which cannot be treated in the framework
of the model with massless injectidB) lacking a dimen-
sional parameter to account for the external scale of turbu-
lence.

For such quantities, contrary to E€RO), the solutions
contain full series of the form

R(e,d) = 2 R(d)s", (22)

k=0
and the coefficient®(d) in the limit d— 2 reveal singular
behavior of the type~(d-2)™~AX(2A=d-2) giving rise
to the growth of the relative part of the correction terms at
d— 2. The effect of these is fairly discernable also at the real

(19), integral representations readily calculable for any givervalued=3, hence the natural desire to sum up contributions

d have been obtained in RéfL].
That condition(18) holds thus imposing o#, cancella-

of the form(e/A)X at all orders of the: expansion(22). This
may be done with the aid of the double,A) expansion

tion of the contributions~logs is not a coincidence, but a [4,5]. The idea of such an "improves expansion” with the
consequence of general principles of the theory of UV renoruse of the local renormalization schef® was explained in
malization. The most important of them is the requirementour Rapid Communication3], where many important

that all counterterms must be local in spdice., polynomial

subtleties and details of calculations were, however, not re-
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flected due to lack of space. In the present paper, we give a &
detailed exposition and start from the proof of inconsistency
of the renormalization scheme proposed in Ré4f. 3xC

Ill. CONSTRUCTION OF THE DOUBLE (&,A)
EXPANSION: PROOF OF THE INCONSISTENCY OF THE
NONLOCAL RENORMALIZATION [4] IN THE
TWO-LOOP APPROXIMATION

Model (4) is logarithmic(i.e., the bare coupling constant
Jo Is dimensionlegsat e =0 in function(3) in arbitrary space
dimensiond. In a fixed dimensiord>2, the values=2 cor-
responds to the "real problem.” Calculations in the frame-
work of thee expansion have a rigorous meaning only in the 2 206 3 d
vicinity of =0, whereas continuation of the results to the
"real” value e=2 is always understood as an extrapolation. FIG. 1. The borderline BAC between the regions of parameter
In the scheme applicable fat>2 reviewed in Sec. Il, this spaced, & corresponding to diredto the right from the curve BAC
extrapolation corresponds to the continuation along the verand inversgto the lefy energy cascades.
tical ray from the poin{d,s=0) to the point(d,s=2) in the
(d,&) plane. The same final point may be reached along a raljeen noted that the condition is not simpiy>2, but d
from any starting pointd,# d,e=0) at which the model is >d,=2.06. From the practical point of view this is irrel-

logarithmic as well. The extrapolation along the ray startingevant, because we are interested in the space dimedsion
from the origin (dy=2,6=0) is, however, singled out, be- =3,

cause atl=2 in model(4) an additional UV divergencéb- The idea of the doublés,A) expansion together with the

sent atd>2) occurs in the 1Pl functiofi,,,. On such aray extrapolation along the ra~ ¢ of relation(23) in the con-

we put text of the present problem was first put forward in Réi.
d=2+2\, Ale={=const. (23) The UV divergences are present not only in the 1PI function

Iy, butalso inl’,,,, and appear in the form of poles in the
The parameters and A are considered small of the same parameterss and A and linear combinations thereof, or,
order and their ratid\/e=¢ a fixed constanf=1/4 in the equivalently, as poles iz with the fixed ratioA/e=¢
extrapolation to the pointd=3,e=2)]. =const. To remove the additional divergences from the

Extraction of contributions of the ordes™ with A/e  graphs of the 1PI functior, ., renormalization of the am-
=const corresponds to the account of all contributions of thélitude Dy in the nonlocal correlation function of the random
form e™(e/A)" with anyn=0,1,2.. andm+n=k in Eq.(22).  force (2) and (3) was used in Ref[4], i.e., relations(7)

Thus the use of thée,A) expansion in such a form is di- between bare and renormalized parameters were replaced by
rectly related to the problem of the account of the singulari-
ties atA — 0 pointed out in the discussion of relati¢22).

It is worth emphasizing that the very process of extrapo- 26 3
lation along a ray from the starting poitd=2,£=0) is in- Q=9u"2y Z92,=2p (24
applicable to description of two-dimensional turbulence inwith a new renormalization constaf which does not have
which the physics is totally different from the three- an analog in Eq(7).
dimensional problem due to the appearance of the inverse |t should be noted that the introduction of the additional
energy cascadd.l]. In Fig. 1, we have plotted the borderline constantz, breaks the last connection in E(7) and its
curve BAC between the dire¢horma) and inverse energy consequence@0). Therefore, the author of Ref4] has put
cascades obtained in R¢12]. The starting point of the ex- forward the conjecture that in the scheme of the double
trapolation for the two-dimensional cagg=2,e=0) liesin (¢ A) expansion at the real valus=2, the velocity fielde
the region of the direct cascade, whereas the final p@int and the frequency have dimensions with values different
=2,e=2) lies in the region of the inverse cascade. Thus therom the Kolmogorov value21). This is, of course, true, if
ray connecting these points intersects the borderline—thgenormalization relationg24) are used. We shall further
curve BAC—so that the extrapolation becomes impossibleshow, however, that the renormalization scheme of R&f.
However, the ray connecting the starting poidE2,6=0)  with relations(24) is not internally consistent. This is not
and a final point like(d=3,e=2) lies completely in the re- obvious in the one-loop approximation, to which the author
gion of the direct cascade, therefore on such a ray the prolwsf Ref.[4] restricted himself, but becomes apparent already
lem of the change of the cascade pattern does not arise. The the next two-loop approximation. In Ref5], another
rightmost point of the region of the inverse cascogint A scheme of construction of the doulle,A) expansion was
in Fig. 1) has the coordinatd,=2.06[12]. In the preceding put forward in which the last equality in Eq7) together
discussion of the extrapolation along the vertical ray fromwith its consequence®0) and(21) are preserved. We shall
the pointd,e =0) to the point(d,e=2) atd>2, it should have deal with this approach in Sec. IV.

vo=vZ,, Do=govs=gu*1°Zp,
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The main goal of this section is to prove that the scheme Substituting expression(80) in Eq. (27), we find the one-
of multiplicative renormalizatiori24) contains intrinsic con- loop contributions to the renormalization constants,
tradictions. To this end, consider representations similar to
Eq. (11) for the 1PI functiond’, andI',, . According to Z(Vl) — U_A
Eq. (24), the amplitudeD, in Eg. (10) now acquires the
additional factorZp, therefore instead of relatiofll) we

UuA’
Z(Dl) =- ? (32

One-loop calculation yields the following valuéfirst ob-

now obtain tained in Ref[4])
Tr F(p’(P'w:O ——7 4 uszgy(l) 727 4 (USZg)Z’y(Z) 7572 A=-1, A'= 1 33
sz(d—l) v o' v D o' v “D = 2+§ ( )
toe (25 In the one-loop approximation, there are no problems with
The analogous relation for the 1PI functidy,,, is logs in the constant, so that the multiplicative renormal-
ization (24) appears quite acceptable.
Trly ’|w 0 Consider now two-loop contribution®8) and (29). Tak-

— e (1) 5352
=Zp+us’ Yororlv 2D ing into account the already known one-loop expressions

(32), we obtain

C D A A 2UA
(26) ZS;Z):ES{UZS4€(_2+_> +USZ€<—+B><—U_—L)},
tol & & & &

The expansion parametertilsggj from Eq.(9). In Sec. I, (39
the quantityd was considered a fixed parameter and there-

fore it was possible to trea®; as a simple normalization 2 _ 124 C_'+D_') + e £+ /
factor. Hered is determined by the relatiof23) and in cal- 2o =Lp)mus &2 us’ B

culations within the usual MS scheme the quangfyshould (3uA 2uA’>}

QVB,U«ZSD —d 26(d 1)
+(U325)27 )0 2,025+

be expanded in the small parameter-e. Following Ref.
[4], we shall use the modified schenwsS (see, e.g., Ref.

[13]), in which the quantityS, is treated as a whole and not The condition of cancellation of the contributions: ™t log s

expanded im\. It is well known that the choice of scheme is in Eq. (34) is

not reflected in any physically significant results. Al _
The constant& are sought as series of for(8) and de- AC+2A-A' -2 =0, (36)

termined from the condition of cancellation of the UV diver- and in Eq.(35) analogously

gences(poles ine with A/e=cons} in relations(25) and , , N

(26). Denoting byZ™ the contribution of ordeu"~g" in —A4CT+2A'(3A+2A) = 0. (37

any of these constants, we arrive at expreSS|0nS similar tOur two- |00p calculation of the coefficien®& andC’ y|e|ds
Egs.(14) and(15): at the first order inu~g, 1

(1) — e, (1) C=1- s
ZV - ‘CS{USZ ’),(P,(p}’ 2(2 + g)

(35
& &€

Z§)=—£€{uszsy¢/¢/} (27) , 2 __3
=2 0G0 @+ (39

and at the second order
Substitution in relation§36) and(37) of the calculated quan-
2) - de (2> e (D 15(1) _ 57(1) .
= LA’ ot us’ 7¢’¢[ZD 22,1, (28 tities (33) and (38) readily shows that cond|t|0(86) is sat-
isfied, whereas Eq37) is not. This means that m there is
79 =r - u2548yfpz,)¢,+uszsy, [3ZY - 27971, (29) no “bad” contribution ~¢~*log s=&~1log(x/p), while in

o _ D ' there is such a term,
For calculation in the two-loop approximation, the following

contributions are needed: 2(1+(4+3)) e og(u/p) 39
@ _A @ _A 2+0%3+0) ’
Yoo = TBY i Vg =B, B0 \hose coefficient is the expression on the left-hand side of
Eq. (37).
2 _C D 2 _C ' Thus within the renormalization scheme of Rpf] ac-
Yoo~ 2 + A T Vel T 2 + e +--. (31  cording to relationg24) a dependence on the external wave

numbers through log=log(w/p) appears in the renormaliza-
These are analogs of relatiofs2) and (13) with different  tion constants, which is completely inacceptable by the very
coefficients, however, which now may depend on the ratiaefinition of the renormalization constants. It is not difficult
Ale=¢. to understand the reason for this: in sche(24) there is a
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violation of a fundamental principle of the general theory of Guided by the general theory of the UV renormalization,
UV renormalization—the requirement that all countertermsthe authors of Ref.5] put forward another scheme, in which
must be local(polynomial functions of external wave vec- a local counterterm~k? instead of the nonlocal one
tors) [13]. The introduction of the coefficierft, at the term  ~k?"%2%¢ is used to absorb singularities from the graphs of
~¢'D¢’ in action (4) with the nonlocal injection function the 1PI functionl’,, .. This corresponds to addition of the
(3) is tantamount to introduction of a nonlocal countertermterm~ ¢’ ¢’ to the action functional. In function&) with
with the structurgp*~9-2, This feature takes the scheme dis- the correlation functioD from Egs.(2) and (3) there is no
cussed beyond the framework of the standard theory of U\such term, so that upon the addition of the terma’ 3¢’ the
renormalization with such unpleasant consequences as tlhenormalization ceases to be multiplicative. This would be
appearance of th@inacceptabledependence on wave num- inessential if our only goal was the elimination of diver-
bers in the renormalization constants. This general line ofjences from Green’s functions, which is quite possible by a
argument motivated the authors of RES] to change the nonmultiplicative renormalization. For the use of the stan-
scheme ofe,A) renormalization to conform to the require- dard technique of the RG, multiplicative renormalization is,
ment of the polynomial in wave-vector form of all the coun- however, necessary. This is why the authors of [&fpro-
terterms(localnesy although in the one-loop calculation of posed to consider a two-charge model in which to function
Ref.[4] the inconsistency of the scheme proposed there dod8) ~k*42=k?~%"2* the term~k? is added at the outset
not appear explicitly. with an independent coefficient,

It might be suggested to change relati@9) to exclude _ 2-2A-2e o 3 2-oA-2e 32
the wave-number-dependent contributi¢g9) from Zg). dr(k) = Dok + Dagk” = grovpk * G20v0k".
Equation(29) was obtained, however, from the requirement (40)

that in the two-loop approximation all UV divergences— Here, the amplitude, of Eq. (3) is denoted byD, The

poles ine—were removed from the renormalized 1PI func- ; '
. 2) parameterg;o andg,g introduced in Eq(40) play the role of
tion I', s, so that any change of the form ZE from Eq. two independent bare charges.

(29 would lead to the appearance of poles:im the renor- The contribution withD,, in relation (40) corresponds to
malized fung:uonI‘(P/(P/. . . thermal fluctuations. A model with this term only has been
. The persistent opponent might say, “Who cares, | am nof5v7ed earlier in Ref[6]. In the theory of turbulence,
interested in the two-loop approximation, | am completerD20:0 should be considered the “real value” of this param-
happy with the one-loop accuracy, where there are no prObe'ter, since only the first term in E40) at e=2 reproduces
lems.” Here, the objection would be that elimination of UV o pumping of energy by large-scale eddies. It will be
divergencegpoles ing) to all orders in perturbation theory is shown below that vanishing of the bare parametgs
not a caprice but a compelling necessity. If such poles argDmVas:O does not imply vanishing of the corresponding

left, then there is no guarantee that results obtained at the,,Jrmalized parametep, o that in terms of renormalized

lowest order of perturbation theory do not acquire Correc'parameters, functiofd0) gives rise to a two-charge model.

tions of the same order from the higher-order terms not ac- The unrenormalized action is, as before, functiof
counted for(in fact, there is conviction in the opposite.e., but now with the injection functio40) instead of Eq(3) in

lowest-order - calculations become completely unreliabley,s cqrrelation functior(2). In the adopted shorthand nota-
Therefore, in particular, the conclusion of Rpf] that rela-

tions (20) are violated in thée,A) scheme is not correct; in
the consistent renormalization scheme, these relations con-
tinue to hold[5].

In conclusion, let us point out that the “bad” contribution , 5
(39)in Z<D2) vanishes af=-1, i.e., atA=—¢ in Eq.(23). Then + @'l de+ e - (e d)e]. (41)
d=2+2A=2-2¢ and energy injection3) becomes local: The propagatorépe’), and{¢’¢'), corresponding to action

di~ _p4_d_2'9:p2 (such a model was considered in RE8]).  (41) maintain an earlier forn(s), whereas ¢e), is replaced
In this case, the multiplicative renormalizati@v) conforms ch

to the requirement of local counterterms and the correspon
ing constantsZ do not contain any dependence on $m

1 - - !
S(®) = EQD'(Dlokz A2 1 Dyk?)

_ (D1k? 272 + Dyk®)

_ 2|4 _ 47
accordance with the general theory. (eedo il exp - wkt - t'[]. (42)
0
IV. CONSTRUCTION OF THE (e,A) EXPANSION IN THE We are interested in the region>0 andA>0 in Eq.
TWO-CHARGE MODEL WITH LOCAL (23). In this region, in mode(41) the additional problem of
COUNTERTERMS: TWO-LOOP CALCULATION OF THE “A divergences” arises which was absent in mddelwith
RENORMALIZATION CONSTANTS injection function (3). Let us explain this in more detail.

Wave-vector integrals—with the shorthand notation
In the preceding section it was shown that in feeA)  [dk...—corresponding to the 1PI graphs discussed always
schemd23) the multiplicative renormalizatiopt] of the am-  reduce to “nearly logarithmic” ones in the present set of
plitude Dy in Eqg. (3) is not acceptable. The reason is that themodels. Their deviation from logarithmicity appears in the
counterterm with structure(3) is nonlocal ~k*92  form of factors of the typek® with a small exponenix
=k?=?2722 on rays(23). =2mA -2ne, wheren and m are non-negative integers. The
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exponenta is the wave-number dimension of the wave- poles ing). The dimensionless expansion parameters of the
vector integrals obtained upon all time integrations and mayerturbation theory for these quantities are
be calculated by the following simple rule: each loop integral _ _
over wave vectors contributes a term o «, the term with _ Doy Doy
Do in Eq. (42) yields the contribution -2-2A, but the term = 3203p%’ 2= 323p 2
with D, does not affectr at all. Thus it may readily be seen _

that if only the nonlocal term witlD, is left in Eq.(40) [i.e.,  with S from Eq. (9). Instead of relatior{10), we now have
if we return to model(3)], then all the exponenta in the

(44)

graphs ofl',,, andI',,, ate>0 andA>0 become nega- Tr Lyreluo =up?| —1+ D anlanzy(nl,nz)
tive. All the integrals in the limikk— < converge, they may d-1 0 e A
be carried out over the whole wave-vector space, and the 1nl+r’122> .

divergences appear as polessim and their linear combi-

nations. (49
However, in the model with injectioit40)—due to the  and the analogous expression .,

presence of the second term with;—at A >0 wave-vector

integrals appear witlae>0. They diverge in the limik— o Tr l“gp,ip,|w:0 _

and thus require an UV cutoff. As examples we quote the d-1 D1op

values ofa in the graphs of interest for us. In the one-loop

graphs ofl",/,: @=-2¢,2A; in the two-loop graphsa=-4e, +Dyp?| 1+ a21agzy§;‘,1;2>

—2e+2A,4A; in the one-loop graphs df .. a=-4e-2A, N =0ny>-1,

—2¢,2A; in the two-loop graphsaw=-6e—2A,—4e,—2e+2A, ny+ny=1

4A. (46)
Thus, in the two-charge modé#0) at A>0 (>0 is ) ) )

a|WayS |mp||ed, some integra|s have th& divergence at In termS of the I’enormallze_d Val’l_ableS, relat|q|4§) and

large k. To remove these divergences, an additional proce(46) yield for the reduced dimensionless functions the fol-

dure of A renormalization procedure is needed which welowing representations:

shall discuss in the Appendix. At the moment, the important T T

2-2A-2¢

point is that after the\ renormalization, the limit\ — o may M =-7,+7Z, > oty (47
be taken with the result that divergences appear only in the vpX(d-1) T =00, L

form of poles ine,A and their linear combinations. The nyn,=1

same poles may be found within the “formal scheme,” where

all integrals are understood as an analytic continuation on the TCC y

parameters: and A from the region, where there are o elelwx0 T geran Zp

divergences. (d-1)gr’uwp* U, 2

In our case, this is the region &>0 and small(com-
pared withe) negativeA <0 (i.e.,d<2). In this section, we
shall consider results obtained in the framework of this “for-
mal scheme.” There is no UV-cutoff parametérin this
scheme, but the divergences appear in the form of poles in (48)

with A/e=const. The goal of the renormalization is removal , here the expansion parametessand a, from Eq. (44) are

of these poles. In Appendix 2?7, it will be shown that thegyhressed through the renormalized parameters according to
results obtained this way coincide with those obtained at relations(43)

>0 after the A renormalization and subsequent limk

Ny ny (Ng,np)
+ZD2 E Q™Y o™ s
n=0n,=-1,
ny+ny=1

— 0, aq = Ulszsz;a, ap = U25_2AZDZZ;3. (49)
The relations of multiplicative renormalization in the for- . .
mal scheme are Here, u;=9:%/32, u,=9,$/32, ands= w/p. Dependence

on ¢ of the coefficient functionSyf;l(;”z) and yg],l"fZ) in Egs.

(47) and(48) is determined by relations of the form of Egs.
(30) and(31), in which the({=A/g)-dependent coefficients

_ 3_ _
D10=0i0¥6 = Gis* v, Oio= gl,u/zszgl;

— o 3_. -2\ 3 20
D20= 0200 = Gott ¥ Zp,  G20= G2kt Ly, A, B, C,D, A, B, C, and D’ now acquire subscripts
. . corresponding to the superscrigts;,n,) of the quantities
w=vZ, ZyZ,=1, Z,7,=7p;, (43)  »mm2 |n the one-loop approximation, the following analogs

. . . . of relations(30) are needed:
with two independent renormalization constants for the vis-

cosity vy and the.amplitud_eDzo; the amplitudeD,, of t.he o Ak i Ak,

nonlocal correlation function of the random force is not Yoo T, TBik Yo =T T+ B (50)
renormalized. The renormalization constartsand Zp, are

found from the condition that the 1PI functiofig |0 and ~ with the index setsi k)={(1,0),(0, 1)} for y,, and the sets

Ly orlwso are UV-finite (i.e., with A/e=const there are no (i,k)={(2,-1),(1,0,(0,1} for v, In the two-loop ap-
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proximation, the following analogs of relatioit31) have to The constantZ, and Zp, are determined from the condi-

be included: tion of cancellation of all UV divergencegoles ine with
Ale=cons} in Egs.(47) and(48). Denoting byZ™ the con-
tribution of orderu™~ g" with respect to the set of charges

(51) andu, to any constant, we obtain at the first orderir g

1) _ (1,0 -2A,(0,1)
zy = [fs[u15287¢r(p +UpS ™2 Yol

(i,k) _ &( Di,k (ik) _ Ci,,k, + i(
82 '

71_ + ’ Il T
o'e € o'e g2

with the sets(i,k)={(2,0),(1,1),(0,2)} for y,, and (i,k)
={(3,-1,(2,0,(1,1),(0,2} for v, . For calculation of

the constantZ in the one-loop approximation, which was
carried out in Ref[5], only constanté\ andA’ from Eq.(50)

2
u
(1) — _ 1 4e+2A (2,70 e (1,0) ~2A . (0,1)
ZDZ_ Es uzs4 'y(p/(’p/ +u:|_32 ‘yt,D/(P’ +UZS ’)’(Pl‘p/ l

are needed. For our two-loop calculation, all constants in (52
Egs.(50) and(51) are necessary. and at the second order
|
s (2,0 o 1,1 - 0,2 s (1,0 - 0,1
7@ = £ fuist yfp,(P) + Uy U, 2Ayfp,43 +Uuds 4Ayfp,¢> + Uy yfp,(P)[— 2797+ u,s 2Ayfp, :[ZS; - 27973, (53
uj (31 (2.0 (1) 02, Ui 2.1
(2) — _ ~1 6e+2A, (3,71 2c4e . (2,0 e—2A, (1,1 2c-4A (0,2 | M1 4e+2A _(2,-Dr _ a—(1)
ZD2 - £8 uzs ’)/‘P"PI + U1S4 790’(9’ + U1U252 '}’@/wr + uzs ’y‘Pr(pr + uzs ’y(prqor [ 3ZV ]
1,0 - 0,1
+ sy 01Z5) - 32N + us 2y b 22) - 3z§1>]} . (54)
[
Substituting expression$0) and(52), we find the one-loop ) 1 3
contributions to the renormalization constants, Coo=—1+ -+,
2+¢ 2
1
Z(ul) = ;(ulAl,0+ UxAg 1), 4 1
Ciim——+—. (57
, (-9 1-¢
1(u
Z(Dlg =- —(u—lAé’_1+ WA, o+ U2A6,1>- (550  To check the cancellation of the “bad” termsstlog's in
e\t

Egs.(53) and(54), only terms~1/¢? from them are needed.
The coefficientsA andA’ here have been calculated in Ref. They are determined in E¢51) by the coefficient< andC’

[5]. In our notation, from Eq. (57) and in the contributions witlh and A’ from
Egs.(50), (55), and(56). Substitution shows that all contri-
Ao=-1, Ayq= 1, A, = L, butions withe™*logs in Egs. (53) and (54) cancel as re-
' 4 ' 2+¢ quired.

A specific feature of the renormalization constap is
A =2 , 1 (56 that it contains terms-1/u, [see Eq(55)]. When such ap,
1072, Poa= e is substituted in renormalization relatio3) in the expres-

. sion for D, terms independent ofi, appear(generation
In the present work, we have carried out the two-loop Calcuterms)

lation and determined the coefficieBsand B’ in Eqg. (50)
together withC, C’, D, andD’ in Eq. (51). Let us quote the =

coefficientsC andC’ necessary at the moment, Dzos% = Upp ™17,
Coo=1- ; 1

20 22+9’ = 13w u, - ;(uiAé’_1+ UgUoAL o+ USAG ) + -+ |.

2 1 (58)
g ¢ g Due to such terms, the conditi@,,=0 does not lead to the
trivial conclusionu,=0, i.e., a nonvanishing value of the

;o 2 3 ;o1 renormalized charge corresponds even to the Zezal

31T 2403+ 3+¢ 0 22 value of the bare charge.
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The ellipsis in Eq.(58) stands for contributions of the analysis of Sec. V the charges andu, are considered in-
two-loop order and higher, which contain termai"/¢"™?  dependent parameters.
with n=3. In the regionu~ & (where the fixed pointi. of We shall not quote here the fairly cumbersome expres-
the RG lies, see Sec.)Vthey are of the same order inas  sions obtained by us for the consta®sB’, D, andD’ in
the explicitly quoted one-loop contribution in E¢58).  Egs.(50) and(51). Instead, we quote the two-loop expres-
Therefore, to determine the connection between the chargesons for the renormalization constarts and Zp, obtained
u; andu, imposed by the conditioZO:O(i.e.,ZDZ:O), the  with the use of them and relation®3)—(57) in the MS
two-loop calculation of the constar#sis not sufficient. This  scheme(a detailed account of the method of calculation can
is unimportant, however, in the following, because in the RGbe found in Ref[1]),

L 1[ 4+3 2¢+1], [sg+3 2 _1{3 i]z 1{2 __]
Ll e 2[<2+§>e+ (& ]“1 L(l—f(l—oez]“l“z 2 ze T 2] |t o T ™
(59
R _2_ul+g+{ (13+1%) 2+l ]3_1_1[34§+19+6§2+(§+4><2§+1)}2
DT T2+ € le |2@+02+0e 3+02+0&) M2 T2| T 2+0e 2+pe |

_}{13+31§+2(4§+1)] 1(3 1 ) 2 1[ uy 2 6&_“_5}@_1) (60)

2l di-0 Ta-oe |t T2\ Ea) Rt e PhEen T - T

where

R=-0.168.

This number has been obtained by a computer calculation aflave numbemp. Since in the present mod€&) the external
a relatively simple but cumbersome twofold integral, throughscale of turbulence has been put equal to infinity, this corre-
which all the nontrivial two-loop contributions in Eq&9) sponds to the regios=u/p>1. The perturbation expansion
and (60) are expressed. of G(p) contains powers of the paramesavhose exponents
grow without limit, due to which it is ill-suited for finding
the sought asymptotic behavigr—. We shall briefly re-
V. RENORMALIZATION-GROUP REPRESENTATION visit the solution of this problem within the method of RG.

The use of renormalized parameters as such does not Since the fieldsb={¢, ¢’} in the present problem are not
solve the main problem of a large expansion parameterrenormalized, the renormalized function& differ from the
growing with the Reynolds number. It is, however, a necesunrenormalized oned/=(®- --®) only by the choice of vari-
sary step towards the use of the method of the renormalizables and the form of perturbation expansigpandg, in-
tion group which allows us to solve the problem by effectivestead ofg;q andg,o), and we may write
resummation of the perturbation theory. We shall consider as
an example the equal-time pair correlation function

(@it ¥)ei(tx")) =Gy(r), r=x-x', (61)

which is the most interesting quantity for us in the following. Here, ey={vy,010,9>0} is the set of all bare parameters,
The Fourier transform of this function may be written as  wherease={v,g,,9,} are their renormalized analogs, and
_ the ellipsis stands for the arguments not affected by renor-
Gij(p) = P;j(p)G(p), (62) malization such as the coordinates, times, etc. The unrenor-
where P;(p) is the transverse projection operator apd Mmalized functionsW do not depend on, while the renor-
=p|. Dimensional arguments lead to the following represenmalized functiona\R do because of the introduction gfin

VVR(gling VM- ) = W(g]_01g201 Yo, - ) .

tation of the scalar functiot(p) from Eq. (62): renormalization relationg43). The independence ¢f of the
functionsW is expressed by the equatién,W=0. Here, and
G(p) = *p "?R(s,01,02), s:'L—;, (63 henceforth,D, = ud, with fixed bare parameters,. The

equationD, W=0 written in terms of the renormalized func-
whereR is a dimensionless function of dimensionless argu-tions WR=W and their arguments, u is the basic RG equa-
ments. We want to calculatg(p) in the inertial range of the tion
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D WR(G, v, p1,...) = DpdWR(G,m,p1,..) =0, (64)

whereDg stands for the operatioﬁﬂ expressed in terms of
the renormalized variables,

DRG = D/.L + Blﬂgl + 182(992 - ’YVDV!

whereD, = x4, for any variablex. The RG coefficient func-
tions (the anomalous dimensionsand theg functions in
Eq. (65) are defined as

(65)

Vo= f)ﬂ InZ,, a={r,05,0,D5},

ﬁizf?ﬂgi,, i=1,2. (66)

The term withD,, in Eq. (64) is written with the account of
renormalization relatior{43) for v and definitiony, (66).
From Eq.(66) and renormalization relationg3), it follows
that

B1(91,:92) = 91~ 2& — v4,(91,92) ], (67)
B2(91.92) = G2 2A = v4,(91,92) ],
Yo, =" 3w Vg, = Y0, ” 30 (68)

We are interested in the infrargtR) asymptotics of small
wave vectorg and frequencies of the renormalized func-
tions WR or, equivalently, large relative distances and time
differences in thet,x) representatiofiin static objects like
Egs. (61)—(63), dependence ohor w is absent It is deter-
mined by the IR-stable fixed poimg, at which8(g«)=0 for
all B functions. The fixed poing- is IR-stable, if real parts of
all eigenvalues of the matrimijzaﬁi/&gﬂg:g* are strictly
positive(see, e.g., Ref$15,16]). Below it will be shown that
in our model(41) the system of twg3 functions (67) and
(68) in the region of our interest>0, A>0 has an IR-stable
fixed pointg«={g;+,0+} With g1« # 0, gp« # 0.

In its presence it follows from the RG equatio(gl) that
(see, e.g.. Ref§16,17) the sought asymptotidd”|,; of the
Green functionWR has the following property of “IR scal-
ing” [in the (t,x) representatioh

WR (A8t A\ 7Ix) = NASWWR| (1),
Aw=2 Ay, (69
@

wherex is the set of all coordinate variables andll times,

PHYSICAL REVIEW E 71, 036305(2005
A,=1-vy, A,=d-A,,

A,=2-7,, 7,=7(0). (70

At the fixed point withg;.#0 andg,.#0, the valuesy,
= v,(g-) of RG functions(66) are readily found from the
definition the fixed poiniB;(g+) = B,(g+) =0 together with re-
lations (67) and (68): yglk:—Zs, y;Z:ZA, y,=2¢l3, V*Dz
=2A+2¢. Substitution ofy,=2¢/3 in Eq. (70) leads to for-
mulas (20) and their corollarieg21) for e=2. Thus, in the
two-charge model41) with the local renormalizatiofb], the
critical dimensions of the velocity fielgd and frequency» at
the real values=2 retain their Kolmogorov values contrary
to the conjecture of the author of Ré#l].

Consider again functiof63). It is a particular case of the
function WR and satisfies the RG equati®®¥): DgcG=0. A
representation of the solution of E§4) for G(p) convenient
for the asymptotic analysis at— 0 may be obtained with the
aid of invariant variablese=e(s,e) corresponding to the
complete set of renormalized parametess{v,g;,9,}. They
are defined as solutions of the RG equati@ge=0 with
the operatorDgg from Eq. (65) and the normalization con-
ditions'e=e at s=1. In terms of the invariant variables, the
solution of the RG equatiori64) for G(p) may be repre-
sented as

G(p) = P R(s,01,02) = ¥"P* R(L,01.G2) . (71)
The right-hand side of Eq.71) depends ors through the

invariant variableg(s, e) only, whose asymptotic behavior in
the limit s— c—determined by the IR-stable fixed poiisee
below—is simple: the invariant chargegy and g, tend to
fixed valuesg;+=0O(e) andg,-=0(e), whereas the invariant
viscosity has simple powerlike asymptotics. It may be con-
veniently determined by expressing the invariant variables

e=(v,0;,0,) in terms of the bare variables,=(vy,910,920)
and the wave numbep. According to definition, the bare
variablese, as well as the invariant variablessatisfy the
equationDgey=D,€=0. The connection between the two
sets of parameters is determined by the relations

vo=vZ,(9), G10=91P*Zy,(0),

G20= 02P *Z4,(9), (72

valid because both sides in each of them satisfy the RG equa-
tion, and because at= u/p=1 they coincide with relations
(43) owing to the normalization conditions. Using the con-
nection between renormalization constabézizl indicated

whereash >0 is an arbitrary stretching parameter. Summa-n EQ. (43) and excluding these constants from the first two

tion in expression(69) for Ay, goes over all fields®
={p,¢'} entering the function\R. In Eq. (69), only those
arguments of the functioWR are explicitly shown which are
stretched under a given scale transformation.

The quantitiesA , and A4 in Eq. (69) are critical dimen-
sions of the frequency and the fieldsb={¢, ¢’}. They are
all unambiguously (see, e.g.. Refs[16,17]) expressed
through the quantityy,= v,(g.)—the value of the RG func-
tion y,(g), defined in Eq(66), at the fixed point,

relations in Eq(72), we find g,qv3=D10=0,p%*#°, and from
here

v= (Db /g) ™,
which for the sought asymptotics— « with the account of
EH 01+ yields

7—) E = (Dldgl*)llsp_zela, S— 0, (73)

Substituting this result in Eq71), we obtain
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G(p) = (D1¢/091+)?Pp* " *PR(1,0.), s—». (74 e

9(1+9)

This relation will be used in Sec. VI. _ From relationg75) and(76), two-loop contributions~&? to

Let us make a remark about relatiof&). According to  £q (77) may be found. We do not quote them, because co-
renormalization relation$43), condition Dy~ 020=0 [S€€  qrginates of a fixed point. ~g. do not have direct physical
the text following Eq.(40)] imposes the constraifip,(9)  meaning and do depend on the choice of the subtraction
~Z,,(9)=0 on the renormalized charg@s={g;,9,}. From  scheme. Objective quantities independent of the subtraction
the last relation in Eq(72) it follows that the invariant scheme are the eigenvalues of the matriix:aﬂi/ag”g:g*, In
chargesg=g(s,g) for any value of the variable=u/p lie  our problem, thew matrix is a 2< 2 matrix, whose two ei-
on the same constraining surfaZgzzo as the initial data genvaluesw, in the two-loop approximation at the Kolmog-
dls-1=0. Therefore, the limit valueg. =limg_,..g(s,g) lie on  orov fixed point are
the same surface‘!gzzo, i.e., the conditiorD,3~0,,=0 is S
compatible with the RG analysis. W= (§+ 4 + w> €+ Z{_ 3-2R

All said above is valid for any subtraction scheme; only 3 3

Upx + Upx = % + 0(82), Uox = + 0(82) . (77)

the explicit form of the RG functiong, in Egs.(66) and(67) A a2
depends on the choice of the scheme. Here, we shall quote -3+ [41+3)R-6-12-9(] e. (79
results of the two-loop calculation in tHdS scheme(Sec. V9/2-12/-8

IV). A brief discussion of the modification of formulas in the
NP scheme is deferred to Appendix A. As said before, n
physically significant results depend on the choice of th

We quote also for reference the relatively simple expressions
Sor the trace and determinant of tikematrix, through which
Ghe eigenvalues, are unambiguously expressed,

scheme. L
In the MS andMS schemes, all RG functiong, are in- 2 4
dependent of. In model(41), they depend only on charges Tro=w,+o_= 5(35"‘ 4)e-5(B¢+3+ R, (79)

and the parametgf=A/e. The two-loop expressions for the
constantsZ, in Eg. (66) are given by Egs(59) and(60). In

4 4
calculation of the quantitiey,=D,, In Z, from Eq. (66), the detw = w,w_= 5(3§+ 2)e’ - 5(2R+ 1)(3¢ +2)€.
operationD,, may be replaced bgg from Eq.(64) and the
contributions withD,, andD, omitted, since the quantities, (80)
do not depend om and». Such a calculation yields The one-loop contributions & in Egs.(77)~(79) and~&2in
Eqg. (80) were obtained earlier in Ref5]. In the one-loop

(4 + I approximation, this fixed poing. is IR-stable in the sector

v,=2(u; + Uy) + > L+ 2(5¢ + 3)uyu, — 4AR(U; + Uy)? £>0, {>-2/3 in the (¢,A) plane. Whene>0 and ¢
¢ <-2/3, both eigenvalue§78) are real and have different
+ e (75) signs[this may be seen most easily from the one-loop con-

tribution in Egs.(79) and (80)]. With growth of  upon in-
tersection of the borderliné,=-2/3, both eigenvalues be-
~2(up + up)? {13+ 19U 2(34¢ + 19 + 62 come positive and then, upon reaching the next borderline

vD,= 2+0) ot 2(1-3)/3=-0.488, the argument of the root in E(}.8)
U2 £z ¢ becomes negative, i.e., the fixed point becomes an IR-
5 4(1-R)(up+uy)® attractive focus withw,=azib with a>0. It remains such
= 6up + (13 +31)usu, + U o until the next borderline @ +/3)/3=1.821 is reached, upon

passing which the root argument in E@8) becomes posi-

tive again and both eigenvalues real and positive. For our

"physical” ray {=1/4(d=3) the fixed pointg: is an IR-

Let us recall that;, ~ g, andu,~ g, are charges with a more attractive focus.

convenient normalizatio49), while the ellipsis stands for What was said above refers to the one-loop approxima-

corrections of orde®(u®). tion. The account of the two-loop corrections in Egs.
Substituting quantitie$75) and (76) in Eq. (67), we ob-  (78)<80) leads to a deformation of the borderlines of the

tain expressions for thg functions in the two-loop approxi- region of IR stability, but the "physical” segment of r&33)

mation. Then from the conditiong;(g-) =B5(g-)=0, coordi-  with {=1/4, 0<e<2 still remains in this region.

nates of the fixed pointg.~u. may be found. In the

framework of thes expansion, there are three fixed points

(76)

VI. SKEWNESS FACTOR AND

[_5]: (i) the trivial fixed pointul*flo,uz*:o; (i) the "kingtic" KOLMOGOROV CONSTANT

fixed pointu;«=0,u,« # 0; and(iii) the "Kolmogorov” fixed

point u;« # 0,Us« # 0. In the regione>0, A>0 of interest The exponent of the power of the wave number in Eq.
for us, only the Kolmogorov fixed point is IR-stable, for (74) is determined exactly and does not have corrections in
which in the one-loop approximation the form of higher powers of. At the physical value=2,
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this exponent assumes the Kolmogorov value. To find thgjye lengthA=(&/ ,,8)1/4_ Such a cutoff is natural, but at the
Kolmogorov constant, the amplitude of this function has togame time only orders of magnitude may be discussed, of
be calculated, which, however, can be done only approxizoyrse not the exact values. Therefore, there is nothing to
mately, because the correspondingxpansion does not ter- revent replacing in Eq82) the cutoff parameteA by aA
minate. In calculation of the amplitude, apart from technicalyith a coefficienta of the order of unity, which yields the
difficulties at two-loop order, a principal problem arises asgxira factora® on the right-hand side of Eq82). This
well. Itis connected with the necessity to express the answehctor tends to unity at — 2, hence it does not affect the
for G(k) in terms of the energy injection rateinstead of the  physical(real value of the Kolmogorov constai@i«(s=2),
parameteD,, of the forcing correlatiort40). The connection  but it does affect coefficients of the hypothetieaxpansion
betweenD, and £ is determined by an exact relation ex- Of the function C«(e). Generalizing these observations, it

: : ; ; ; may be stated that the physical content of the theory is not
FJﬁi;:)nngé)m terms of the functiords(k) in the correlation changeq, if to the rig_ht-hand side of E®2) an extra factor
' F(e) with F(2)=1 is added. In Ref.[20] (see also
(d-1) ok d(k) (81) [16,17,19), relation (82) without the extra factoF(e) was
2(2m)8 R regarded as the definition of the quantidy, Other ap-

o _ . _ proaches to the definition of the functid®k(e) and itse
Sub_stltutmg here funct|(_)(140) W't.h D=0 [see the text fol- expansion21-27] may be reduced to the introduction of a
lowing Eq. (40)] and introducing the UV cutoffk<A

particular functionF(e) with F(2)=1 on the right-hand side
=(£1v3)Y4 (the inverse dissipation lengthwe obtain the fol-  of relation (82).

&=

lowing connection between the parametérand D Thus, ¢ expansion of the Kolmogorov constant in the
402 — o) AZ4 model with the powerlike injection is not defined unambigu-
Dyo= (_8—)5_ (82) ously. However, physical quantities independent of the am-
Sy(d-1) plitude D4q (universal quantitigsdo have a well-defined

) L o ) expansion. The skewness factor
Idealized injection by infinitely large eddies corresponds to

d¢(k) <« 8(k). More precisely, according to E¢81), S= %/33/2 (84)
=
di(K) = 2(2m)"ES(K) (83) is an example of such a quantity. In E§4), S, are structure
f d-1 functions defined by the relations

In view of the relation (if)
Sir) = Lot x+1) = ¢ (tX)]), ¢ = ﬁ (85
8(k) = lim(2m)™ f dx(Ax)%*~* explik - x)

e—2

According to Kolmogorov theory, the structure function

= Sélk_d|imz[(4 - 22)(KIA)*™%], Sy(r) in the inertial range is of the form
the powerlike injection withd;=D;k*%%¢ and the ampli- S,(r) = C 23253, (86)
tude D4 from Eg. (82) in the limit ¢ — 2 from the region 0
<e<2 gives rise to the5 sequence83). whereCy is the Kolmogorov constant with a simple connec-

Relation(82) reveals that at fixed, the quantityD,, de-  tion with the Kolmogorov constant of the energy spectrum
pends one and it is necessary to take this dependence int¢18]. Although there is strong experimental evidence that the
account in the construction of theexpansion for the Kol- Kolmogorov scalingS,(r) ~ r™3 does not hold in the inertial
mogorov constant. On the other hand, it shows that the quamange for the structure functions of orde=4, for the
tity R(1,g-) from Eg. (74 must have a singularity of the second-order structure functi@(r) the experimental situa-
form (2-¢)?3 in the limit e — 2: only in this case will the tion about anomalous scalifige., deviation of the power of
Kolmogorov constant in the model with the injectiah  r from the Kolmogorov value 23 in Eq.(86) in the inertial
=D,k* %2 and the amplitudeD,, from Eq. (82) have a rangd is still controversial and in any case this deviation is
finite value in the limite — 2. The measurable experimental small [28]. Therefore, we shall use the Kolmogorov
Kolmogorov constanCy in terms of the model with such asymptotic expressioii86) for the second-order structure
pumping corresponds to the limiting valae 2, and we want  function Sy(r) in the following analysis.
to define its generalizatioy(e) for the whole interval 0 The structure functiorg;(r) may be found exactly in the
<g=<2. Obviously, such a generalization cannot be dondnertial range 18],
unambiguously, because it is not possible to define the un-
amblguous dependence of the paramBtgyin Eq.(82) one Sy(r) = - 12 53 (87)
at a fixed value of. dd+2)

Let us explain this in more detail. When deriving relation
(82, we assumed that integrdB1) for the injectiond;  which allows us—with account of Eq$84) and (86)—to
=D, k* %2 has an upper cutoff equal to the inverse dissipa+elate the Kolmogorov constant and the skewness factor
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12 213 expressed through the val@e=2) according to Eqs(84),
«Z| " dd+2s (88  (86), and(87) by the relations
Of the three quantitieS,(r), S(r), and S, only S has a Cy= 3Q(2){ 12 T/s :_[ 2 ]3/2 (93)
unique e expansion. Thus, relatio(88) (valid only for the 2 |dd+2] ' 3Q(2)
physical values =2) might be used to determin® using the ) )
calculated valueS(s=2). Quantity (92) may be calculated both in the douhble,A)

To find the RG representation of skewness fa¢ga, it expansion and _in the usua_lexpansior_]. In the former case,
is necessary to have RG representations of the functiorf§® corresponding expansion is obtained on the basis of re-
S,(r) and Sy(r). The functionSy(r) is connected with the 'ations(74), (90), and(91) in the form
Fourier transform of the pair correlation functi@tk) by the

relation Qle,) = e Wik (94)
_ dk (k1) , 0

S(r)=2 (ZW)dG(k) 1- (kn)2 {1-exditk -nl}, The usuale expansion of the quantit® for dimensionsd
(89) >2 has been obtained in Refl],

therefore its RG representation may be found on the basis of _ 13 . K
RG representatio74). An analogous RG representation in Qle,d) =2 kzonk(d)s ' (95)
the inertial interval may be written for the functi®@j(r). It is

more convenient, however, to use the following exact resultThe connection between expansi@f4) and(95) is revealed

an analog of expressio@7): by investigation of singularities of the coefficier@(d) in
- Eqg. (95 at d—2. An analysis of these singularities shows
Sy(r) = - 3(d-1I'(2-&)(r/2)* Dy (90)  thatin the vicinity ofd—2=2A=0, these coefficients may be
(4mY2I(d/2 +¢) ' expressed in a Laurent expansion,

This relation is a manifest demonstration that the amplitude *

of the structure function, expressed in termsDof, has a Qu(d) = X gy (96)
singularity ate —2; in this case it is~(2—¢)™%. On substi- 1=0

tution of Eqg. (82 in Eqg. (90), this singularity cancels the
corresponding zero on the right-hand side of B9), lead-
ing for S;(r) to an expression finite at=2 and coinciding

Substitution of expressio(®6) in Eq. (95) leads to the rep-
resentation

with Eq. (87). o o
Relations(74), (89), and(90) might serve as the basis for Q(e,d) = &3> E (e/A) A (97)
construction of thes expansion of the skewness factéd). k=0 1=0

However, an additional difficulty arises on this way. The ) ) ] )
point is that the powerlike dependen8gr) ~r2-2/3, deter- Chang|_ng varla_bles in Eq97) to e and{=A/e, we arrive at
mined from Eqs(74) and (89), is only valid whens >3/2,  €xpansion94), in which

because fore<3/2, integral (89) diverges atk— o [this w0

means that the main contribution$g(r) in this case is given V() =S gl (99)
by the term<<pr2(t,x)) independent of]. However, the de- K rs ke

rivative rg,S,(r) is free from this flaw, because, according to ) )
Eq. (89), Relations(96) and (98) show that the alternative expan-

sions (94) and (95 sum different infinite subsequences of

dk (k -1)2 _ double sum97). In Ref.[3], a procedure of improvement of
rd,Sy(r) = Zf (27r)dG(k) 1- (kn)?2 (k-r)sin(k -r). the & expansion was proposed with the use of the mutually
complementary information about the quant@ycontained
(91 in the partial sums of expansio84) and (95),
Integral (91) is convergent for all 82e<2. On the other n-1 n-1
hand, at t_he physical _vz_aIue: 2, the amplitudes i|$2_(r) and QS}L = 83 W (9K, Q(sn) = &8> Qud)e*, (99)
ro.Sy(r) differ by a trivial factor 2/3, therefore in Refs. k=0 k=0

[1-3] for the construction of the expansion, the following )
analog of the skewness factor was used: wheren=1 is the number of loops.
Terms in the double sur{®7) taken into account irQi"‘)A
r6:S(r) _ raSyr)

and Q(S”) have been schematically plotted in Fig. 2 in the
S(NIP2 [~ (N1

form of dashed horizontal and vertical stripes, respectively.
The Kolmogorov constant and the skewness factor ar¢he effective quantity

Qle) = (92

All terms in the dashed area will be taken into account in
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¢ TABLE I. One- and two-loop values of the Kolmogorov con-
2-loop stant in the usuat expansion(C,) and the double:,A expansion
A (C,a); the contributionC in Eq. (93) from the correctionsQ™ in
Eq. (100); and the valueC.¢ from Egs.(93) and(100).
1-loop
T | n c, Coa Cs Cer
\ RNV 1 1.47 1.68 1.37 1.79
\ 2 3.02 3.57 4.22 2.37
‘\ \‘\ Q"
OO QP 5 quoted, the recommended experimental value of the Kol-
K ‘\ / mogorov constanC,,,=2.01[29] lies between the values of
T — o the first and second approximation. However, the difference
1 @; o /// e 8N e between these values is rather significant both inethex-
S T ///,/Af} 2-loop pansion and in thés,A) expansion, let alone the leading
0 0// // ‘ /Z }1-10017 terms of thee expansion of the latter. For the improved
L expansion, i.e., for the quanti.=C,+C, ,—C; calculated
0 1 k according to Egs(100 and(93), however, this difference is

about three times smaller leading to far better agreement

FIG. 2. Summations in the calculation @, in Eq. (100. with the experimental data.

Terms in the double surt®7) taken into account irQi"L and Q(S”)
correspond to the dashed horizontal and vertical stripes, respec-
tively. The correction termbQ™ corresponds to a sum over the

double-dashed square. VIl. CONCLUSION

Q(er#:QEsn) +Q(sr,1)A‘ Q" (100 In conclusion, we have presented a detailed comparison
of two different renormalization schemes for the stochastic
Navier-Stokes problem near two dimensions. By explicit
two-loop calculation, we have shown that the nonlocal
scheme of Refl4] cannot consistently be carried out beyond

where

1/3“‘1 n-1 o the leading one-loop approximation. On the contrary, our
QM =13 X (/) g two-loop results confirm the consistency of the local renor-
k=01=0 malization scheme of Refi5] based on the general principles

of the theory of UV renormalization.

is a subtraction term necessary to avoid double counting of 1he detailed explicit two-loop analysis of different renor-
terms with k<n-1J<n-1 (the double-dashed square in Malization schemes presented here is all the more important,
Fig. 2). It may be found by taking the corresponding numberbecause the inconsistent renormalization of nonlocal terms in
of terms from expansion&96) or (98). From the point of ~dynamic models continues to appear in the literafi;g].
view of the usuale expansion(95), relation (100 may be The correct choice of the renormalization scheme is vital
interpreted as follows: in tha—1 first terms of the expan- for a proper account of the effect on structure functions of
sion, the coefficient§,(d) from Eq.(95) are calculated ex- the additional singularities appearing in the field-theoretic
actly, but in all higher-order term&=n) they are calculated model in the limitd— 2. Using the consistent local renor-
approximately with the account af-1 first terms of their ~malization scheme, we have shown that a proper account of
Laurent expansioli96). the “nearest singularity” in the coefficients of tleeexpan-

Our two-loop calculation of thes,A expansion of the sion(95) leads to a significant improvement of the results of
quantityQ together with the two-loop calculation of R¢l]  the two-loop RG calculation at=3. We have analyzed the
allowed us to obtain an improvedexpansion of the quantity effect of this procedure at other as well. It turned out to
Q at second order of perturbation thed®]. For the Kol-  reduce significantly the relative contribution of the two-loop
mogorov constant calculated according to E8) for d=3,  correction in the whole range considered>d=2.5. At the
it led to the result quoted in Table I. same time, this contribution remained largedat2, which

In Table I, we have quoted for comparison the values ofwe think to be an effect of singularities at the next excep-
the Kolmogorov constant calculated according to @) at  tional dimensiord=1.
first and second order of the usualexpansion(C,), the The proposed procedure of approximate summation of the
doubles,A expansior(C, ,), the contributiorCsin Eq.(93) & expansion is, of course, applicable not only to the calcula-
from the correctionsQ" in Eq. (100, and the valueC.y tion of Q(e), but all universal quantities such as dimensions
obtained from relationg93) and (100. In all the cases of composite operators.
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' The MS and NP schemes differ by a finite renormalization
of the parameterg and v, therefore all objective physical
APPENDIX A: RENORMALIZATION-GROUP ANALYSIS quantities, in particular critical dimensiof0), calculated in

IN THE NORMALIZATION-POINT (NP) SCHEME these schemes coincide.

2. Renormalization in the NP scheme for the
double (£,A) expansion

UV renormalization and the subsequent RG analysis may | ot s start by briefly discussing the possibility to carry

be camedh out In (yﬁﬁre&tsvarﬁtlonsd In ”‘9 body |0f_th's out a nonlocal renormalization in the NP scheme. Relations
paper we have used the MS scheme due to its popularity ang 4 petween the renormalized and bare parameters would be

geialfe(':t was used in tgmcorrﬁlc(:) nolnlqcaISSChem(_a of preserved in this case, whereas the two independent renor-
ef. [4]. Consistency conditions like relatiof18) ensuring malization constantg, and Zp, should be determined from

independence of the renormalization constant of the Wave . sollowina normalization conditions ai=y for the 1P|
number in the MS scheme may appear in a different form iq‘unctionsl“ 9 (25) andT" (26): K
(PI(,D (P"P/ .

other renormalization schemes.

1. Renormalization in the NP scheme in space dimensioth> 2

Here, we shall illustrate this point in the example of the Tl
scheme with the “normalization point'NP) first for the T—B =-1,
technically simpler case of fixed space dimensibn2. In wp P=p
this approach, the renormalization constZptis calculated
from the normalization condition for the 1Pl Green function Trlg o] =0 _
3 2ot -2 — 1 =1. (A4)
Tr r(p’(p|w=0 gru~p ( - ) p=u
wpA(d- 1) =-1 (A1) The problem of the dependence of the renormalization con-
p=u

stants on the wave number is absent in such a setup. How-
in contrast to the cancellation of polesdrnn expression11) ever, it may be readily checked that conditidB6) and(37)
in the MS scheme. Then instead of E¢s4) and (15), we  remain necessary to ensure the absence of UV-divergént
obtain e£—0) contributions ~u?s™tlog(u/p) in the renormalized
Green functiond’,,, and ', for arbitrary values of the
wave numbep.
In the approach with local counterterms, the renormaliza-
22 =122 — 270y Y =22 ~2(y1 2], (A2)  tion constantsZ in the NP scheme are determined—instead
“e i “e o of the single condition of Eq(A4)—by the two normaliza-
and after substitution oZ, from Eg. (A2), expression1l)  tion conditions
assumes the form

(1) — ;4D
ZV —U7¢,¢,

Trl gl =0
Tr F(p’<p|w:0 (1) 2r A (2) (A z(d - “]3 -
m =—1+u y‘P,w(sz =D +uy, (s*=1) vp p=u
- 248 )4 - 1]+ o). (A3) TrTyrelo =41 (AS)
gv3,u28p4_d_28(d -1 o= Ua !

In the NP scheme, the renormalization cons@ntioes not
depend ors=u/p due to the very definition, but cancellation with '/, from Eq.(47) andI',,, from Eq.(48). From here
of poles ine is not obvious in Eq.(11). In the two-loop the renormalization constang, and Zp, in the NP scheme
approximation(A3) with account of expression&l2) and  follow in the form

z —1+<—l—§ + ) +<i+ +§) +[<—1—i>£+<2 -3 +R—2+E>l] 2
vs e 2ttt ety 2r)@\ ¥ [ Jel™

e L e T (1o
((-1)é . -1)e|t? 202 e 2
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Z —1+{c— ! _Z+L]U1 (20—2—55 2>u <c+§+i>u +{(i—i>l
D2™ 2+0e 2 2+0]u, € 1\ )T 3 T 24 )@

( - 68+ R c+8>1] u [( 13 )1 ( 2c-2 4+c>1] )
+{12-2c+ +3 2c-1---—— |5 +|3R-20-10+=—=+3— |~ |2
3+¢ 2+¢)€elu, { 4+2)é ¢ 2+() €

R S ) IR RS a7
(-1 ¢)é I (-1 Je] 2 2028 e 2

whereR=-0.168 andc=0.2274 are constants found by nu- approximation keep the form of Eq77), but the two-loop

merical integration. These are analogs of expressi®85  contributions(which we do not quotediffer from analogous

and (60) for the renormalization constants obtained previ-contributions in theMS scheme. The eigenvalues. of the

ously in the MS scheme. It may be readily checked that matrix w, however, remain exactly the same as in M&

expressiongA6) and (A7) differ from Eqgs. (59 and (60) scheme, because these quantities do not depend on the sub-

only by a UV-finite renormalization of the parametersu;,  traction scheme.

and us,. L In conclusion, we note that in an attempt to use the NP
In the NP scheme, in contrast with tihdS scheme, the schemgA4) in the mode[4] with nonlocal renormalization,

renormalized Green functions have an analytic dependendée inconsistency of this model in terms of the RG functions

on the set of parameters and A, i.e., they do not have v, would appear in the form of poles & /in the two-loop

factors of the typeas+bA in the denominators. This is in contributions.

accord with the general ideas of the theory of analytic renor-

malization[14].

In the constantZ of the MS scheme with a fixed value of APPENDIX B: A RENORMALIZATION AND  (£,A)
{=Al/e=const, the dependence enis present only in the EXPANSION ABOVE TWO DIMENSIONS
form of poles 1£, 1/, etc. Contrary to this, in the con-
stantsZ of the NP scheme, regular termsl, ¢, 2, etc. are As was explained in Sec. 1V, in the two-charge mode)

added to the poles in. For calculation of the RG functions in some graphs the wave-vector integrals diverge at large

and the correction exponenésin Sec. V on rayg23) with wave numbers. To regularize such integrals, it is necessary to

{=Ale=const to the ordes?, only terms of order 1¢ and 1  infroduce a cutoff parametex. This may be done, e.g., by

are required in the one-loop contributional to Z, whereas ~ restricting Fourier components of the velocity fiejd to

in the two-loop contributions-u? only terms of order 142 ~ Wave numbers less thah in functional (41), which auto-

and 1k are needed. Expression&6) and (A7) are quoted matlca_lly brings about the corres_pondlng _sharp wave-vector

just with this accuracy. cutoff in the bare response functidf) and in the bare cor-
The two-loop expression#6) and(A7) for the constants relation funcuor_1(42). It was already explalned in Sec. IV

Z with the necessary accuracy together with definiticg®y  that all suchA divergences are “nearly logarithmic” and ap-

give rise to the following expressions for the RG functionsPear in the results in the form of powefs® with small (of
Yl the order ofe for A/e=consj positive exponents.

The elimination of the\ divergences may be reduced to a
renormalization of the bare parameters. Denoting for brevity

— _ _ 2
7y=(2+3A-ceur +(2+CA+34)uy — 4(uy + U)*(2R+ 1), the whole set of parameters bBywe introduce the notion of

(A8) “primary bare parameters’éO:{T/O,Biozﬁi(ﬁzg,i:1,2} and
“secondary bare parameterg}={vq,Djp=giov5,i=1,2 (see
2 3 : Ref.[16]). The original model is defined by a functional of
Yo,= U2 +(7-0A+(4 - 2)e] +2[2+5A+(2-C)eluyy the type of Eq.(41) with the A cutoff introduced and with
up the “primary bare parameters,
up +uy)32R+ 1
+[2+(3+0)Alu, - 4T ERED. (A9) - -
U2 S(®) = ¢’ (Dyk* 7% + Dyk?) ¢'/2
nm_ ~ 2
where the notation is the same as in E@&) and(A7). The t o[- de+ Vo= (@ d)el. (B1)

RG functions(A8) and(A9), contrary to their analogs in the

MS scheme, do not contain factors like-const in denomi- Renormalization of this model may be carried out in two
nators, i.e., they are analytic in the pair of parameters,  steps: the first is thé renormalization with the aim of re-
which is a consequence of similar analyticity of the renor-moval of all A divergences. This amounts to a reorganization
malized Green functions. Coordinates of fixed poimts of the bare parametegs— e, in which the secondary set of

~ g« obtained from Egs(A8) and (A9) in the one-loop parameters is expressed as functions of the primary set,
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ey=6y(€,A), and vice versag,=€y(ey,A). The correspon- of gy and A through the renormalization relations
dence between the two sé&kg and e, is bijective perturba-

tively, therefore any of them may be chosen as the set of Dlo:§1o7fg:gloV3: D10,
independent variables.
If the parameters, are chosen as independent, then in the Dzo:§207’8 - gzngZDz — DzoZDZ,

Green functiond” of model (B1) expressed in terms o,
and A, there will be noA divergences leftthey all will be - -
concentrated in the formulas connectiggand ep) and the G10= 01g,: O20= 9202,
limit A— o may be taken in them with the result of elimi-
nating the cutoff parameteY completely from the theory. A
trace of the UV divergences which brought about the positive

powers ofA remains, however, in the form of singularities in simjlar to Eq.(43). The dimensionless renormalization con-

& in the A-renormalized quantities. This happens because i%tantsz in Eg. (B2) are functions of, and A expressed in
the A renormalization, only terms strictly growing as powers the form of series iy~ g, The corresponding dimension-

of A are removed and collected in the renormalization cons . .
stants. These terms contain singularities imndA, although less expansion parameters are the following analogs of Eq.

Tomud, Z,B=1 7,B=7,, (B2

the unrenormalized quantities with fixedl were regular (44

functions ofe and A. Consequently, in thé\-renormalized ~ Dlogj B Dzogj

quantities there must be terms left which are singulag in = 3o = = (B3)
and A, but remain finite in the limitA —. Thus, theA 321 32u3A

renormalization is a way to trade UV divergences in the for
of positive powers of the UV cutofA for poles ine,A and
their linear combinations in such a way that in the 7 =1+ > C(ngnz)’&fl’&gz (B4)
A-renormalized quantities, the limit — o may be taken. i n=0ny>1 v2
The basic conjecture is that the results obtained in this . . () .
manner for the graphs of the Green functiofi¢e,,A  With the dimensionless coefﬂuen@yﬁz2 depending ore
=x,...) (the ellipsis stands for the rest of the argumentsand A/e=¢ only (but in a singular manngrIn expansion
such as frequencies and wave vectan® exactly the same (B4), not all possible terms are included, but only those
as those obtained in the “formal scheme,” i.e., by analytiovhich are “A divergent,” i.e., those with a positive power of
continuation of all integrals without divergences on the A in the productaj’ay2. From Eq.(B3) it follows that
arameten from the region of small <0 (more accuratel ~fi~n o _
E28<A<0). In this sc%eme, the unrenormalized actior>1/ is artag?~ A% a=2nA - nge), (B5)
functional (41). Such an analytic continuation might be car- therefore, fore >0,A >0, in the A-divergent terms witha
ried out without any reference to the model regularized with>0 in Eq. (B4) the inequalityn,= 1 holds, i.e., at least one
t_he (_exp_hcn wave_-number gutoﬂ&, w_hlch IS common prac-  actor with 520~ D, from Eq. (B1) is present.
tice in field thgones of particle phygcs. There, howgver, itis  Erom this it follows, in particular, that to the real value
the renormalized parameters which are the physical one
and their bare counterparts together with the UV cutoff ar . S e
unphysical auxiliary quzntities.gln our case, unrenormalize 20=0 I Eq.(41), which justifies the derivation of on82)_
parameters are the physical ones and therefore it is impo rom Eq.(81) in model(41). We also n~0te that the operation
tant, in principle, to keep track of their relation to tteux- D, in Ed. (66), defined in Sec. V a®, = ud, with fixed
iliary) renormalized parameters, because the fixed-point vaParametersy, in terms of model(B1) has to be understood
ues of the latter remain in the asymptotic expressions foRSud, With fixed'€; andA. These definitions are equivalent,
various correlation functions and the like. because the parametar does not enter in renormalization
The next step after thA renormalization is the renor-  relations(B2).
malization with the goal of removal from all Green functions ~ For the A renormalization(B2), analogs of relations
I'(ey,A=00,...) poles ine for A/e=const. Itis carried out by (45)—(48) may be written and the correspondiAgalculated
the transition from the “secondary bare parametefsithe  at two-loop order. We shall not quote the corresponding re-
same notation was used in Sec.) M the renormalized pa- sults, because explicit expressions connecting the primary
rameterse={v,g;,d,} according to relation$43). (&) and secondarye,) bare parameters are unimportant for
The procedure of the renormalization was discussed the RG analysis of the IR asymptotic behavior in Sec. V,
thoroughly in Sec. IV. Let us now explain in more detail the which is carried out in terms of bare parametgyand renor-
procedure of the\ renormalization: the transition from the malized parameters.
primary bare parametegs to the secondary bare parameters In the NP schemdsee Appendix A the normalization
€. We emphasize that at this stage, we are interested i the condition(A5) may be imposed in th&-renormalized model
divergences only and regard and A as fixed parameters in the same way as just described for the M& MS)
without any investigation of singularities in these parameterscheme. It is not difficult to see, however, that in the NP
tending to zero. We shall consider the parameggrin the  scheme the very procedure of therenormalization is actu-
graphs of the function§' of model (B1) expressed in terms ally not necessary. The point is that in this scheme from the

mTherefore, the constanBin Eq. (B2) assume the form

,0=0in Eqg.(B1) [see the text after Eq40)] it corresponds
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quantity to be renormalized its value at the normalizationmalization, subsequent limih — oo, and final renormaliza-
point is subtracted which automatically leads to a quantitytion in the NP scheme. Therefore, the RG functignand 8
without any UV divergences and thus with a finite—andare also the same, since their expressions in terms of the
regular ine and A—limit, when A —o. For renormalized renormalized correlation functions coincide in both cases.
correlation functions, the result is the same as afteenor-
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